Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the comparison of the spaces $L^1BV(\mathbb{R}^n)$ and $BV(\mathbb{R}^n)$


Author: Yudi Soeharyadi
Journal: Proc. Amer. Math. Soc. 130 (2002), 405-412
MSC (2000): Primary 46B99, 35D10, 47H20, 47D03
Published electronically: May 25, 2001
MathSciNet review: 1862119
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

The notion of $L^1$-variation and the space $L^1BV$ arise in the study of regularity properties of solutions to perturbed conservation laws. In this article we show that this notion is equivalent to variation in the regular sense, and therefore the space $L^1BV$ is the same as the space $BV$ in the sense of Cesari-Tonelli. We also point out some connection between the space $L^1BV$ and the Favard classes for translation semigroups.


References [Enhancements On Off] (What's this?)

  • 1. Paul L. Butzer and Hubert Berens, Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York Inc., New York, 1967. MR 0230022
  • 2. Edward Conway and Joel Smoller, Clobal solutions of the Cauchy problem for quasi-linear first-order equations in several space variables, Comm. Pure Appl. Math. 19 (1966), 95–105. MR 0192161
  • 3. Michael G. Crandall, The semigroup approach to first order quasilinear equations in several space variables, Israel J. Math. 12 (1972), 108–132. MR 0316925
  • 4. Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
  • 5. Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
  • 6. Enrico Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. MR 775682
  • 7. G. R. Goldstein, J. A. Goldstein, and S. Oharu, The Favard class for a nonlinear parabolic problem, Recent developments in evolution equations (Glasgow, 1994) Pitman Res. Notes Math. Ser., vol. 324, Longman Sci. Tech., Harlow, 1995, pp. 134–147. MR 1417067
  • 8. Jerome A. Goldstein and Mi Ai Park, Odd solutions to perturbed conservation laws, Bull. Korean Math. Soc. 33 (1996), no. 4, 521–530. MR 1424094
  • 9. Jerome A. Goldstein and Yudi Soeharyadi, Regularity of solutions to the perturbed conservation laws, Appl. Anal. 74 (2000), no. 1-2, 185–199. MR 1742277, 10.1080/00036810008840809
  • 10. J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth; Die Grundlehren der mathematischen Wissenschaften, Band 181. MR 0350177
  • 11. R. Nagel, G. Nickel, S. Romanelli, Identification of extrapolation spaces for unbounded operators, Tuebinger Bericht. Funktionalanalysis 3 (1993/1994), pp. 137-152.
  • 12. David G. Schaeffer, A regularity theorem for conservation laws, Advances in Math. 11 (1973), 368–386. MR 0326178
  • 13. Joel Smoller, Shock waves and reaction-diffusion equations, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York, 1994. MR 1301779

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B99, 35D10, 47H20, 47D03

Retrieve articles in all journals with MSC (2000): 46B99, 35D10, 47H20, 47D03


Additional Information

Yudi Soeharyadi
Affiliation: Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152
Address at time of publication: Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901-4408
Email: ysoehryd@memphis.edu, ysoeharyadi@math.siu.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-01-06044-0
Keywords: $L^1$-variation, variation, total variation, essential variation, conservation laws, perturbed conservation laws, $m$-dissipative operator, invariant set, Favard class
Received by editor(s): March 1, 2000
Received by editor(s) in revised form: June 12, 2000
Published electronically: May 25, 2001
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2001 American Mathematical Society