IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Inner derivations and norm equality


Authors: Mohamed Barraa and Mohamed Boumazgour
Journal: Proc. Amer. Math. Soc. 130 (2002), 471-476
MSC (1991): Primary 47A10, 47A12, 47A30, 47B10, 47B20, 47B37, 47B47, 47D50.
DOI: https://doi.org/10.1090/S0002-9939-01-06053-1
Published electronically: May 25, 2001
MathSciNet review: 1862127
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We characterize when the norm of the sum of two bounded operators on a Hilbert space is equal to the sum of their norms.


References [Enhancements On Off] (What's this?)

  • 1. Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, The Daugavet equation in uniformly convex Banach spaces, J. Func. Anal. 97(1991), 215-230. MR 92i:47005
  • 2. A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc, 17(1966), 162-166. MR 32:6218
  • 3. L. Fialkow, A note on norm ideals and the operator $X\longrightarrow AX-XB$, Israel. J. Math. 32(1979), 331-348. MR 81g:47046
  • 4. L. Fialkow, Elementary operators $ \& $ Applications, Proceedings of the international workshop, Blaubeuren, 1991, pp. 55-113.
  • 5. I. C. Goheberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Trans. Math. Monographs, vol.18, Amer. Math. Soc., Providence, RI, 1969. MR 39:7447
  • 6. P. R. Halmos, A Hilbert space Problem Book, Van Nostrand, Princeton, 1970.
  • 7. J. Kyle, Numerical ranges of derivations, Proc. Edinburgh. Math. Soc, 21(1978), 33-39. MR 58:7127
  • 8. C. L. Lin, The unilateral shift and norm equality for bounded linear operators. Proc. Amer. Math. Soc. 127(1999), 1693-1696. MR 99i:47013
  • 9. R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1960. MR 22:9878
  • 10. S. Y. Shaw, On numerical ranges of generalized derivations and related properties, J. Aust. Math. Soc. Seri. A 36(1984), 134-142. MR 85e:47001
  • 11. J. Stampfli, The norm of a derivation, Pac. J. Math., 33(1970), 737-747. MR 42:861

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47A10, 47A12, 47A30, 47B10, 47B20, 47B37, 47B47, 47D50.

Retrieve articles in all journals with MSC (1991): 47A10, 47A12, 47A30, 47B10, 47B20, 47B37, 47B47, 47D50.


Additional Information

Mohamed Barraa
Affiliation: Département de Mathématiques, Faculté des sciences Semlalia B.P: 2390 Marrakech, Maroc
Email: barraa@hotmail.com

Mohamed Boumazgour
Affiliation: Département de Mathématiques, Faculté des sciences Semlalia B.P: 2390 Marrakech, Maroc
Email: boumazgour@hotmail.com

DOI: https://doi.org/10.1090/S0002-9939-01-06053-1
Keywords: Generalized derivation, norm, norm ideal, $S$-universal operator, numerical range, spectrum, quasi-nilpotent operator, hyponormal operator.
Received by editor(s): December 3, 1999
Received by editor(s) in revised form: June 27, 2000
Published electronically: May 25, 2001
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society