VIETORIS-BEGLE THEOREM
FOR SPECTRAL PRO-HOMOLOGY

Takahisa Miyata and Tadashi Watanabe

(Communicated by Ronald A. Fintushel)

Abstract. Dydak and Kozlowski (1991) obtained a generalization of the Vietoris-Begle theorem for the cohomology theories induced by CW spectra. In this note we prove a dual of their theorem involving the pro-homology theories induced by CW spectra.

Given any CW spectrum E, let E^* and E_* denote the cohomology and homology theories induced by E on the homotopy category HCW_{spec} of CW spectra. So E^* and E_* are contravariant and covariant functors from HCW_{spec} to the category Ab of graded abelian groups. These functors extend to the functors pro-E^* and pro-E_* from the homotopy category HTop of pointed topological spaces to the pro-category pro-Ab of graded abelian groups. Let \hat{E}^* denote the Čech extension of E^* over HTop.

Throughout the paper, every topological space X is assumed to be unpointed and is regarded as the pointed space X^+ with a discrete base point.

First, recall the following generalization of the Vietoris-Begle theorem:

Theorem 1 (Dydak and Kozlowski [D-K]). Let E be a CW spectrum, and let $f : X \to Y$ be a closed surjective map between paracompact Hausdorff spaces such that $\text{Ind} Y = m < \infty$. If $\hat{E}^k(f_y) : \hat{E}^k(y) \to \hat{E}^k(f^{-1}(y))$ is an isomorphism for all $y \in Y$ and $k = m_0, m_0 + 1, \ldots, m_0 + m$, then $\hat{E}^k(f) : \hat{E}^k(Y) \to \hat{E}^k(X)$ is an isomorphism for $k = m_0 + m$ and a monomorphism for $k = m_0 + m + 1$.

Here $\text{Ind} Y$ means the large inductive dimension of Y, and f_y is the restricted map $f|f^{-1}(y) : f^{-1}(y) \to \{y\}$.

In this note we prove the following dual form:

Theorem A. Let E be a ring spectrum, and let $f : X \to Y$ be a surjective map from a compact metric space X to a compact metric space Y with a finite covering dimension such that for each $y \in Y$, $f^{-1}(y)$ has a finite stable shape dimension. If $\text{pro-}E_*(f_y) : \text{pro-}E_*(f^{-1}(y)) \to \text{pro-}E_*(y)$ is an isomorphism for each $y \in Y$, then the induced morphism $\text{pro-}E_*(f) : \text{pro-}E_*(X) \to \text{pro-}E_*(Y)$ is an isomorphism.

Let Σ denote the obvious functor from the homotopy category HCW of CW complexes to HCW_{spec} which assigns to each CW complex X the suspension spectrum $\Sigma(X)$. For each topological space X, the stable shape dimension $\text{sd}_{\text{spec}} X \leq n$.
Let Z be a CW spectrum with a dimension at most n, then $\Sigma(p_{\lambda'})$ is trivial. For each element $\lambda' \geq \lambda$ such that the following two statements hold:

1. $\Sigma(p_{\lambda'})$ factors in HCW_{spec} through a CW spectrum Z with a dimension at most n, where an expansion is in the sense of [Mi-S]. Note that $\text{sd}_{\text{spec}} X \leq \text{sd} X$ where $\text{sd} X$ is the shape dimension of X (see [Mi-S]) and there is a strict inequality case (see [Mi-S]).

The main tools are the duality between compact metric spaces and CW spectra in generalized stable shape theory and the Whitehead theorem in the generalized stable shape category, which we quote below:

Lemma 2 (Miyata [Mi, Theorem 5.3]). For each compact metric space X, there exist a CW spectrum X^* and a natural isomorphism $E^n(X) \cong E_{-n}(X^*)$.

Lemma 3 (Miyata and Segal [Mi-S, Lemma 4.9]). Let $n, k \in \mathbb{Z}$ with $k \leq n$, and let $(f_{\lambda}) : X = (X_{\lambda}, p_{\lambda'}, \Lambda) \rightarrow Y = (Y_{\lambda}, q_{\lambda'}, \Lambda)$ be a level morphism of inverse systems in HCW_{spec}, which is an n-equivalence. Then every $\lambda \in \Lambda$ admits $\lambda' \geq \lambda$ such that the following two statements hold:

1. if Z is a CW spectrum with a dimension at most n, then every morphism $h : Z \rightarrow Y_{\lambda'}$ in HCW_{spec} admits a morphism $k : Z \rightarrow X_{\lambda}$ such that $f_{\lambda}k = q_{\lambda'}h$;
2. if Z is a CW spectrum with a dimension at most $n - 1$ and $k_1, k_2 : Z \rightarrow Y_{\lambda'}$ are morphisms in HCW_{spec} such that $f_{\lambda'}k_1 = f_{\lambda'}k_2$, then $q_{\lambda'}k_1 = q_{\lambda'}k_2$.

Before we prove the theorem, we prove the following lemmas:

Lemma 4. Let E be a ring spectrum, and let X be a topological space such that $\text{sd}_{\text{spec}} X \leq n$ for some $n < \infty$. Then, if $\text{pro}-E_n(X)$ is trivial, $E^*(X)$ is trivial.

Proof. Let the ring spectrum E be equipped with the maps $i : S \rightarrow E$ and $\mu : E \wedge E \rightarrow E$, where S is the sphere spectrum. Suppose $\text{sd}_{\text{spec}} X \leq n < \infty$, and let $p = (p_{\lambda}) : X \rightarrow X = (X_{\lambda}, p_{\lambda'}, \Lambda)$ be an HCW-expansion of X. Suppose $\text{pro}-E_n(X) \cong 0$. Then $0 \cong E_n(\Sigma(X)) = \pi_*(\Sigma(X) \wedge E) = (\pi_*(\Sigma(X_{\lambda}) \wedge E), \pi_*(\Sigma(p_{\lambda'}) \wedge 1_E), \Lambda)$. Let $\lambda \in \Lambda$, and take $\lambda' \geq \lambda$ as in Lemma 2. Since $\text{sd}_{\text{spec}} X \leq n$, there exist $\lambda'' \geq \lambda'$, a CW spectrum Z with a dimension at most n and morphisms $g : \Sigma(X_{\lambda''}) \rightarrow Z$ and $h : Z \rightarrow \Sigma(X_{\lambda'})$ in HCW_{spec} such that $\Sigma(p_{\lambda'\lambda''}) = hg$. Then the composite

$$\Sigma(X_{\lambda''}) \xrightarrow{\Sigma(p_{\lambda'\lambda''})} \Sigma(X_{\lambda'}) \approx \Sigma(X_{\lambda'}) \wedge S \xrightarrow{1_{\Sigma(X_{\lambda'})} \wedge i} \Sigma(X_{\lambda'}) \wedge E \xrightarrow{\Sigma(p_{\lambda'\lambda'}) \wedge 1_E} \Sigma(X_{\lambda}) \wedge E$$

is trivial. For each element $\varphi_\lambda : \Sigma(X_{\lambda}) \rightarrow E$ of $E^*(\Sigma(X_{\lambda}))$, there is a commutative diagram:

\[
\begin{array}{cccccc}
\Sigma(X_{\lambda'}) & \xrightarrow{\Sigma(p_{\lambda'\lambda'})} & \Sigma(X_{\lambda}) & \approx \Sigma(X_{\lambda}) \wedge E & \xrightarrow{\Sigma(p_{\lambda'\lambda'}) \wedge 1_E} & \Sigma(X_{\lambda}) \wedge E & \xrightarrow{\Sigma(p_{\lambda'\lambda'})} \\
\Sigma(X_{\lambda'}) & \xrightarrow{1_{\Sigma(X_{\lambda'})} \wedge i} & \Sigma(X_{\lambda'}) & \approx \Sigma(X_{\lambda}) \wedge E & \xrightarrow{1_{\Sigma(X_{\lambda'})} \wedge i} & \Sigma(X_{\lambda}) & \xrightarrow{\Sigma(p_{\lambda'\lambda'})} \\
\Sigma(X_{\lambda}) & \xrightarrow{\varphi_{\lambda} \wedge 1_E} & E \wedge E & \xrightarrow{\varphi_{\lambda} \wedge 1_E} & E \wedge E & \xrightarrow{\varphi_{\lambda} \wedge 1_E} & E \\
\Sigma(X_{\lambda}) & \xrightarrow{1_{\Sigma(X_{\lambda})} \wedge i} & \Sigma(X_{\lambda}) & \approx \Sigma(X_{\lambda}) \wedge E & \xrightarrow{1_{\Sigma(X_{\lambda})} \wedge i} & \Sigma(X_{\lambda}) & \xrightarrow{\varphi_{\lambda} \wedge 1_E} \\
\end{array}
\]
This implies that \(E^*(\Sigma(p_{\lambda*}))(\varphi_\lambda) = 0 \). Hence \(E^*(\Sigma(p_{\lambda*})) = 0 \), which implies \(\hat{E}^*(X) \approx 0 \). \(\square \)

Lemma 5. Let \(E \) be a ring spectrum, and let \(X \) be a compact metric space. Then, if \(\hat{E}^*(X) \) is trivial, \(\text{pro-}\text{E}_*(X) \) is trivial.

Proof. Suppose \(\hat{E}^*(X) \approx 0 \). Since \(\hat{E}^*(X) \approx E_{\lambda*}(X^*) \) for some CW spectrum \(X^* \) by Lemma 3 then \(0 \approx E_{\lambda*}(X^*) \approx \pi_{\lambda*}(X^* \wedge E) \), which means that \(X^* \wedge E \) is contractible. Let \(p = (p_n) : X \to X = (X_n, p_{n+1}, N) \) be an HCW-expansion of \(X \) such that each \(X_n \) is a finite CW complex. Then this induces an HCW_{spec}-coexpansion \(p^* = (p^*_n) : X^* = (X_n^*, p^*_{n+1}, N) \to X^* \) of \(X^* \) in the sense of \([\text{Mi}]\), where each \(X_n^* \) is the Spanier-Whitehead dual of \(\Sigma(X_n) \). So for each \(n \), there is \(m \geq n \) such that the composite

\[
X_n^* \approx X_n^* \wedge S^{1 X_n^*} X_n^* \wedge E^* \xrightarrow{p_n^* \wedge 1 E} X_m^* \wedge E
\]

is trivial. For each element \(\varphi_m \) : \(X_m^* \to E \) of \(E^{\lambda*}(X_m^*) \), there is a commutative diagram:

\[
\begin{array}{ccc}
X_n^* \wedge E & \xrightarrow{p_n^* \wedge 1 E} & X_m^* \wedge E \\
\uparrow & & \uparrow \\
X_n^* & \xrightarrow{1 X_n^*} & X_m^*
\end{array}
\begin{array}{ccc}
X_m^* \wedge E & \xrightarrow{\varphi_m \wedge 1 E} & E \wedge E \\
\downarrow & & \downarrow \mu \\
E & \xrightarrow{\varphi_m} & E
\end{array}
\]

This implies that \(E^{\lambda*}(p_n^*)\!(\varphi_m) = 0 \), and hence \(E^{\lambda*}(p_{nm}) = 0 \). Since \(E_*(\Sigma(X)) \approx E^{\lambda*}(X^*) = (E^{\lambda*}(X_n^*, E^-\text{E}(p_{nm}), N)) \), then we have \(\text{pro-}E_*(X) \approx 0 \). \(\square \)

Lemma 6. Let \(E \) be a ring spectrum, and let \(f : X \to Y \) be a map of topological spaces. Then:

i) \(\hat{E}^*(f) : \hat{E}^*(X) \to \hat{E}^*(Y) \) is an isomorphism iff \(\hat{E}^*(X \cup_f CX) \) is trivial;

ii) \(\text{pro-}E_*(f) : \text{pro-}E_*(X) \to \text{pro-}E_*(Y) \) is an isomorphism iff \(\text{pro-}E_*(Y \cup_f CX) \) is trivial.

Proof of Theorem A. Suppose \(\text{pro-}E_*(f_y) \) is an isomorphism for each \(y \in Y \). Then Lemmas [6 ii), 4] and [6 i]) imply \(\hat{E}^*(f_y) : \hat{E}^*(y) \to \hat{E}^*(f^{-1}(y)) \) is an isomorphism for each \(y \in Y \). Since \(\text{Ind} Y < \infty \), the Dydak and Kozlowski theorem implies that \(\hat{E}^*(f) : \hat{E}^*(X) \to \hat{E}^*(Y) \) is an isomorphism. This fact, together with Lemmas [6 ii), 4] and [6 i]), implies that \(\text{pro-}E_*(f) : \text{pro-}E_*(X) \to \text{pro-}E_*(Y) \) is an isomorphism.

A surjective map \(f : X \to Y \) between compact metric spaces is said to be stably cell-like if each fibre has a trivial stable shape type (see [Mi-S]). Theorem A with the spectrum \(E \) being the sphere spectrum and [ML] Theorem 6.1 imply

Corollary 7. Let \(f : X \to Y \) be a stably cell-like map from a compact metric space \(X \) with a finite stable shape dimension to a compact metric space \(Y \) with a finite covering dimension. Then \(f \) is an equivalence in the stable shape category.

Remark. The “figure eight like continuum” \(X \) of Case and Chamberlin [CC] has a trivial stable shape type but has a nontrivial shape type ([Ma]). For any compact metric space \(Y \), the natural projection \(f : X \times Y \to Y \) is stably cell-like but not cell-like. If \(Y \) is finite dimensional, Corollary [7] then implies that \(f \) is an equivalence in the stable shape category. The finite dimensionality of \(Y \) in Theorem A is essential as pointed out in [D-K] by the cell-like map of Keesling [K] \(g : Q \to Y \) onto
an infinite dimensional compact metric space Y such that $\tilde{K}^*(Y) \neq 0$, where \tilde{K}^*
denotes the reduced K-theory.

REFERENCES

Department of Computer Science, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, 437-8555 Japan

Current address: Division of Mathematics and Informatics, Department of Human Environment, Faculty of Human Development, Kobe University, 3-11 Tsurukabuto, Nada-Ku, Kobe 657-8501, Japan

E-mail address: tmiyata@kobe-u.ac.jp

Department of Mathematics, Faculty of Education, Yamaguchi University, Yamaguchi, 753 Japan

E-mail address: tadashi@po.yb.cc.yamaguchi.ac.jp