On perfectly meager sets in the transitive sense

Author:
Tomasz Weiss

Journal:
Proc. Amer. Math. Soc. **130** (2002), 591-594

MSC (2000):
Primary 03E15, 03E20, 28E15

DOI:
https://doi.org/10.1090/S0002-9939-01-06073-7

Published electronically:
July 25, 2001

MathSciNet review:
1862142

Full-text PDF

Abstract | References | Similar Articles | Additional Information

We prove that assuming one can always find a perfectly meager set, which is not perfectly meager in the transitive sense.

**[B]**Bartoszynski, T.:*On perfectly meager sets*, preprint, 2000.**[vD]**van Douwen E.:*The integers and Topology*, in Handbook of set-theoretic topology (K. Kunen and J.E. Vaughan, eds.), Elsevier Science Publishers, B.V., 1984, 116-167.**[G]**Grzegorek, E.:*Always of the first category sets*, Rend. Circ. Mat. Palermo, II. Ser. Suppl. 6(1984), 139-147.**[GM]**Galvin, F. and Miller, A.W.:*-sets and other singular sets of real numbers*, Topology and its Applications 17(1984), 145-155. MR**85f:54011****[JMSS]**Just W., Miller A.W., Scheepers M. and Szeptycki P.:*The combinatorics of open covers*(II), Topology and its Applications, vol. 73 (1996), 241-266. MR**98g:03115a****[M]**Miller, A.W.:*Special subsets of the real line, in Handbook of set - theoretic topology*(K. Kunen and J.E. Vaughan, eds), Elsevier Science Publishers B.V., 1984, 201-233. MR**86i:54037****[N]**Nowik, A.:*Remarks about transitive version of perfectly meager sets*, Real Analysis Exchange, Volume 22(1), 1996/7, 406-412.**[NSW]**Nowik, A., Scheepers, M. and Weiss, T.:*The algebraic sum of sets of real numbers with strong measure zero sets*, The Journal of Symbolic Logic, Volume 63, No 1, March 1998, 301-324. MR**99c:54049****[NW1]**Nowik, A. and Weiss, T.:*Not every**-set is perfectly meager in the transitive sense*, Proceedings of the American Mathematical Society, Volume 128, Number 10, 2000, 3017-3024. MR**2000m:03116****[NW2]**Nowik, A. and Weiss, T.:*The algebraic sum of a strong measure zero set and a perfectly meager set revisited*, East-West Journal of Mathematics, Volume 2, Number 2, 2000, 191-194. CMP**2001:11****[R]**Recaw, I.:*Some additive properties of special subsets of reals*, Colloquium Mathematicum, Volume LXII, 1991, 221-226. MR**93b:28003****[S]**Scheepers, M.:*Additive properties of sets of real numbers and an infinite game*, Questiones Mathematicae, 16(1993), 177-191. MR**94e:04003**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
03E15,
03E20,
28E15

Retrieve articles in all journals with MSC (2000): 03E15, 03E20, 28E15

Additional Information

**Tomasz Weiss**

Affiliation:
WSRP, 08-110 Siedlce, Poland

Email:
weiss@wsrp.siedlce.pl

DOI:
https://doi.org/10.1090/S0002-9939-01-06073-7

Received by editor(s):
December 13, 1999

Received by editor(s) in revised form:
June 27, 2000

Published electronically:
July 25, 2001

Communicated by:
Carl G. Jockush, Jr.

Article copyright:
© Copyright 2001
American Mathematical Society