Interpolation in nest algebra modules
Author:
Xiaoxia Zhang
Journal:
Proc. Amer. Math. Soc. 130 (2002), 427432
MSC (2000):
Primary 47L35
Published electronically:
May 23, 2001
MathSciNet review:
1862122
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a nest algebra and its invariant projection (or subspace) lattice. In this paper, using order homomorphisms of , we give necessary and sufficient conditions on bounded linear operators and on a Hilbert space to guarantee the existence of an operator in a certain module such that .
 1.
Anoussis, M., Katsoulis, E. G., and Moore, R. L., Trent, T. T., Interpolation problem for ideals in certain reflexive operator algebras, Houston J. Math., 19 (1993), 6373.
 2.
Kenneth
R. Davidson, Nest algebras, Pitman Research Notes in
Mathematics Series, vol. 191, Longman Scientific & Technical,
Harlow; copublished in the United States with John Wiley & Sons, Inc.,
New York, 1988. Triangular forms for operator algebras on Hilbert space. MR 972978
(90f:47062)
 3.
R.
G. Douglas, On majorization, factorization, and
range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415. MR 0203464
(34 #3315), http://dx.doi.org/10.1090/S00029939196602034641
 4.
Alan
Hopenwasser, The equation 𝑇𝑥=𝑦 in a
reflexive operator algebra, Indiana Univ. Math. J. 29
(1980), no. 1, 121–126. MR 554821
(81c:47014), http://dx.doi.org/10.1512/iumj.1980.29.29009
 5.
E.
G. Katsoulis, R.
L. Moore, and T.
T. Trent, Interpolation in nest algebras and applications to
operator corona theorems, J. Operator Theory 29
(1993), no. 1, 115–123. MR 1277968
(95b:47052)
 6.
G.
J. Knowles, On the structure of certain nest algebra modules,
Canad. J. Math. 39 (1987), no. 6, 1405–1412. MR 918385
(89b:47063), http://dx.doi.org/10.4153/CJM19870657
 7.
E.
C. Lance, Some properties of nest algebras, Proc. London Math.
Soc. (3) 19 (1969), 45–68. MR 0241990
(39 #3325)
 8.
Niels
Juul Munch, Compact causal data interpolation, J. Math. Anal.
Appl. 140 (1989), no. 2, 407–418. MR 1001866
(90c:47029), http://dx.doi.org/10.1016/0022247X(89)900747
 1.
 Anoussis, M., Katsoulis, E. G., and Moore, R. L., Trent, T. T., Interpolation problem for ideals in certain reflexive operator algebras, Houston J. Math., 19 (1993), 6373.
 2.
 Davidson, K. R., Nest algebras, Longman Scientific Technical, 1988. MR 90f:47062
 3.
 Douglas, R. G., On majorization, factorization and range inclusion on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413415. MR 34:3315
 4.
 Hopenwasser, A., The equation in a reflexive operator algebra, Indiana University Math. Journal, 29 (1980), 121126. MR 81c:47014
 5.
 Katsoulis, E. G., Moore, R. L. and Trent, T. T., Interpolation in nest algebras and applications to operator corona theorems, J. Operator Theory, 29(1) (1993), 115123. MR 95b:47052
 6.
 Knowles, G. J., On the structure of certain nest algebra modules, Can. J. Math., XXXIX, 6 (1987), 14051412. MR 89b:47063
 7.
 Lance, E. C., Some properties of Nest algebras, Proc. London Math. Soc., no.3, 19 (1969), 4568. MR 39:3325
 8.
 Munch. N., Compact causal data interpolation, J. Math. Anal. Appl., no.2, 140 (1989), 407418. MR 90c:47029
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
47L35
Retrieve articles in all journals
with MSC (2000):
47L35
Additional Information
Xiaoxia Zhang
Affiliation:
Department of Mathematics, Qufu Normal University 273165, Shan Dong, People’s Republic of China
Email:
xiaoxiazhang@webpc.edu.cn
DOI:
http://dx.doi.org/10.1090/S0002993901060749
PII:
S 00029939(01)060749
Keywords:
Nest algebra,
nest algebra module,
operator interpolation,
order homomorphism
Received by editor(s):
March 12, 1998
Received by editor(s) in revised form:
October 22, 1998, November 22, 1999, and June 14, 2000
Published electronically:
May 23, 2001
Communicated by:
David R. Larson
Article copyright:
© Copyright 2001
American Mathematical Society
