ASYMPTOTIC PROPERTIES
OF THE VECTOR CARLESON EMBEDDING THEOREM

MICHAEL GOLDBERG

(Communicated by Christopher D. Sogge)

Abstract. The dyadic Carleson embedding operator acting on C^n-valued functions has norm at least $C \log n$. Thus the Carleson Embedding Theorem fails for Hilbert space valued functions.

Let T be the unit circle in \mathbb{C}, and $\{I\}_{I \in D}$ its collection of dyadic arcs. Let w_I be nonnegative real numbers indexed by $I \in D$. For integrable functions f on T, denote by $\langle f \rangle_I$ the average $|I|^{-1} \int_I f(y)dy$. The classical Carleson embedding theorem [1] is equivalent to the following dyadic result:

Theorem. If $\sum_{I \subset K} w_I \leq |K|$ for all $K \in D$, then $\sum_{I \in D} w_I \langle f \rangle_I^2 \leq C \|f\|^2$ for all $f \in L^2(T)$.

The converse is also true (up to the placement of constants) and is verified by considering functions of the form $f = \chi_J, J \in D$.

An analogous statement may be made for functions taking values in \mathbb{C}^n with matrix-valued weights $W_I \geq 0$ in the sense of quadratic forms. We wish to consider the following n-dimensional embedding theorem:

Proposition. If $\|\sum_{I \subset K} W_I\| \leq |K|$ for all $K \in D$, then $\sum_{I \in D} (W_I \langle f \rangle_I, \langle f \rangle_I) \leq C_n \|f\|^2$ for all $f \in L^2(T; \mathbb{C}^n)$.

The space \mathbb{C}^n here is viewed as a finite-dimensional Hilbert space. One might ask whether a similar result still holds when f takes values in a general Hilbert space \mathbb{H} and W_I are positive selfadjoint operators. This is answered in the negative by [4], which proves that C_n must be bounded from below by $c \log n$. In the current paper we will use the construction in [4] to verify the stronger bound $C_n \geq c(\log n)^2$, which is also proved in [5]. A precise statement is as follows:

Theorem 1. There exist a function $f \in L^2(T; \mathbb{C}^n)$ and matrix weights $W_I \geq 0$ such that $\|\sum_{I \subset K} W_I\| \leq |K|$ and $\sum_{I \in D} (W_I \langle f \rangle_I, \langle f \rangle_I) \geq c(\log n)^2 \|f\|^2$, where $c > 0$ is independent of n.

Received by the editors July 5, 2000.

2000 Mathematics Subject Classification. Primary 42B20, 42A50.

Key words and phrases. Carleson embedding theorem, vector valued functions, operator valued measures, weights.

©2001 American Mathematical Society
I to itself. Thus the first sum is less than A to finite-dimensional subspaces. It is well known [2] that the best possible C_n is bounded above by C(\log n)^2, making these results sharp up to a constant factor.

Proof of Theorem 1. Let e_0, e_1, ..., e_n be the standard basis for \mathbb{C}^{n+1}. Define the Rademacher functions r_j(e^{2\pi it}) = (-1)^{\lfloor 2^j t \rfloor}. For a dyadic interval I, |I| \leq 2^{-i}, r_j is seen to be constant along I. Its value throughout I will be called r_j(I).

Let f(x) = \sum_{j=0}^{n} r_j(x)e_j. Clearly \|f\|^2 = n + 1. The averages of f over dyadic intervals are also easy to compute. When \|I\| = 2^{-i}, i \leq n, \langle f \rangle_I = \sum_{j=0}^{i} r_j(I)e_j.

Let W_I, |I| \geq 2^{-n}, be the rank-one operator satisfying W_I v = |I|(v, \phi_I)\phi_I, where \phi_I = \sum_{j=0}^{i} \frac{1}{1 + 1 - j} r_j(I)e_j. Define \phi_I to be 0 when \|I\| < 2^{-n}. Already we can estimate the sum

\[\sum_{I \in D} (W_I(f)_I, (f)_I) = \sum_{I \in D} |I|((f)_I, \phi_I)^2 = \sum_{i=0}^{n} \left(\sum_{j=0}^{i} \frac{1}{i + 1 - j} \right)^2 \geq cn(\log n)^2. \]

The only task remaining is to show that \|\sum_{I \subseteq K} W_I\| is controlled by |K|. We will prove the estimate \sum_{I \subseteq K} (W_I v, v) = \sum_{I \subseteq K} |I|(v, \phi_I)^2 \leq C|K||v|^2 for all v \in \mathbb{C}^{n+1}.

For each interval I with |I| = 2^{-i}, split the vector \phi_I into the sum of two parts, \phi_I = \sum_{j=0}^{k} \frac{1}{1 + 1 - j} r_j(K)e_j + \sum_{j=k+1}^{i} \frac{1}{1 + 1 - j} r_j(I)e_j. Denote the first sum, which depends only on the length of I \subseteq K, by g_i. Summing over all I with |I| = 2^{-i}, and exploiting the orthogonality of the Rademacher functions,

\[\sum_{I \subseteq K \atop |I| = 2^{-i}} |I|(v, \phi_I)^2 = |K|\left(\sum_{i=k}^{n} (v, g_i)^2 + \sum_{j=k+1}^{n} \frac{1}{(i + 1 - j)^2} |v_j|^2 \right). \]

Thus

\[\sum_{I \subseteq K} (W_I v, v) = |K|\left(\sum_{i=k}^{n} (v, g_i)^2 + \sum_{j=k+1}^{n} |v_j|^2 \sum_{i=j}^{n} \frac{1}{(i + 1 - j)^2} \right). \]

The second sum is less than C|K| \sum_{j=0}^{n} |v_j|^2 = C|K||v|^2. To estimate the first sum, let G represent the \((n - k + 1) \times (k + 1)\) matrix whose \(ij\)th entry is the coefficient of \(e_{i-1}\) in \(g_{i+k-1}\). Then \(\sum_{i=k}^{n} (v, g_i)^2 \leq \|G\|^2 |v|^2.\) Here \(|G|\) is taken as an operator from \(\mathbb{C}^{k+1}\) to \(\mathbb{C}^{n-k+1}\). Under a suitable permutation of indices, however, G is seen to be a restriction of the Hilbert matrix \(A\), \(A_{ij} = \frac{1}{i+j-1})\) to finite-dimensional subspaces. It is well known [2] that \(A\) is bounded from \(\ell^2(\mathbb{N})\) to itself. Thus the first sum is less than \(|K| \|A\|^2 |v|^2 = C|K||v|^2.\) Dividing all weights \(W_I\) by an appropriate constant proves the theorem.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720-3840

E-mail address: mikeg@math.berkeley.edu