Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The continuous spectrum of the Dirac operator on noncompact Riemannian symmetric spaces of rank one


Authors: Roberto Camporesi and Emmanuel Pedon
Journal: Proc. Amer. Math. Soc. 130 (2002), 507-516
MSC (2000): Primary 43A85, 58J50; Secondary 34L40, 53C27, 53C35
DOI: https://doi.org/10.1090/S0002-9939-01-06294-3
Published electronically: July 25, 2001
MathSciNet review: 1862131
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

The continuous spectrum of the Dirac operator $D$ on the complex, quaternionic, and octonionic hyperbolic spaces is calculated using representation theory. It is proved that $\mathop{\rm spec}\nolimits_c(D)=\mathbb R$, except for the complex hyperbolic spaces $H^n(\mathbb C)$ with $n$ even, where $\mathop{\rm spec}\nolimits_c(D)=(-\infty,-\frac{1}{2}]\cup [\frac{1}{2},+\infty)$.


References [Enhancements On Off] (What's this?)

  • 1. M. W. Baldoni-Silva, Branching theorems for semisimple Lie groups of real rank one, Rend. Sem. Mat. Univ. Padova 61 (1979), 229-250. MR 83a:22012
  • 2. -, The embeddings of the discrete series in the principal series for semisimple Lie groups of real rank one, Trans. Amer. Math. Soc. 261 (1980), 303-369. MR 82b:22022
  • 3. C. Bär, The Dirac operator on hyperbolic manifolds of finite volume, Preprint, Universität Freiburg, 1998.
  • 4. A. Borel and N. R. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, second ed., Math. Surveys Monogr. 67, Amer. Math. Soc., Providence, RI, 2000. MR 2000j:22015
  • 5. T. P. Branson, G. Ólafsson, and H. Schlichtkrull, A bundle-valued Radon transform, with applications to invariant wave equations, Quart. J. Math. Oxford (2) 45 (1994), 429-461. MR 95k:22020
  • 6. U. Bunke, The spectrum of the Dirac operator on the hyperbolic space, Math. Nachr. 153 (1991), 179-190. MR 92h:58196
  • 7. R. Camporesi and E. Pedon, Harmonic analysis for spinors on real hyperbolic spaces, Colloq. Math. 87 (2001), 245-286. CMP 2001:08
  • 8. S. Goette and U. Semmelmann, The point spectrum of the Dirac operator on noncompact symmetric spaces, Preprint, 1999. To appear in Proc. Amer. Math. Soc.
  • 9. A. W. Knapp, Representation Theory of Semisimple Groups. An Overview Based on Examples, Princeton Math. Ser. 36, Princeton Univ. Press, Princeton, NJ, 1986. MR 87j:22022
  • 10. R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1-30. MR 47:6945
  • 11. E. Pedon, Harmonic analysis for differential forms on complex hyperbolic spaces, J. Geom. Phys. 32 (1999), 102-130. MR 2000j:22013
  • 12. N. R. Wallach, Real Reductive Groups I, Academic Press, New York, 1988. MR 89i:22029

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 43A85, 58J50, 34L40, 53C27, 53C35

Retrieve articles in all journals with MSC (2000): 43A85, 58J50, 34L40, 53C27, 53C35


Additional Information

Roberto Camporesi
Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Email: camporesi@polito.it

Emmanuel Pedon
Affiliation: Laboratoire de Mathématiques, Université de Reims, UPRESA 6056, Moulin de la Housse, B.P. 1039, 51687 Reims Cedex 2, France
Email: emmanuel.pedon@univ-reims.fr

DOI: https://doi.org/10.1090/S0002-9939-01-06294-3
Keywords: Hyperbolic spaces, spinors, Dirac operator, spectral theory
Received by editor(s): July 5, 2000
Published electronically: July 25, 2001
Additional Notes: The second author was supported by the European Commission (TMR 1998-2001 Network Harmonic Analysis)
Communicated by: Rebecca Herb
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society