Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Existence and Lipschitz regularity for minima


Authors: Carlo Mariconda and Giulia Treu
Journal: Proc. Amer. Math. Soc. 130 (2002), 395-404
MSC (2000): Primary 49J52, 49J99, 49K30, 49N60
DOI: https://doi.org/10.1090/S0002-9939-01-06370-5
Published electronically: September 19, 2001
MathSciNet review: 1862118
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the existence, uniqueness and Lipschitz regularity of the minima of the integral functional

\begin{displaymath}I(u)=\int _{\Omega }L(x,u,\nabla u)\,dx \end{displaymath}

on $\bar u+W^{1,q}_{0}(\Omega )$ ( $1\le q\le +\infty $) for a class of integrands $L(x,z,p)=f(p)+g(x,z)$ that are convex in $(z,p)$ and for boundary data satisfying some barrier conditions. We do not impose regularity or growth assumptions on $L$.


References [Enhancements On Off] (What's this?)

  • [AAB] L. Ambrosio, O. Ascenzi, G. Buttazzo, Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands, J. Math. Anal. Appl. 142 (1989), 301-316. MR 91c:49060
  • [BM] J.M. Ball, V.J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Rational Mech. Anal. 90 (1985), 325-388. MR 86k:49002
  • [C] A. Cellina, On the Bounded Slope Condition and the validity of the Euler Lagrange equation, SIAM J. Control Optim. (2001) (to appear).
  • [Cl] F.H. Clarke, Multiple integrals of Lipschitz functions in the calculus of variations, Proc. Amer. Math. Soc. 64 (1977), 260-264. MR 56:9443
  • [CV] F. H. Clarke, R. B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc. 289 (1985), 73-98. MR 86h:49020
  • [ET] I. Ekeland, R. Temam, Convex analysis and variational problems, vol. I, North-Holland Publishing Company, Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1976. MR 57:3931b
  • [E] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, 1998. MR 99e:35001
  • [GG] M. Giaquinta, E. Giusti, Differentiability of minima of nondifferentiable functionals, Invent. Math. 72 (1983), 285-298. MR 84f:58037
  • [GT] D.Gilbarg, N.S. Trudinger, Elliptic Partial Differential equations of second order, Third Edition; Grundenlehren der Matematischen Wissenschaften, vol. 224, Springer-Verlag, Berlin- Heidelberg-New York, 1998. MR 86c:35035 (review of 2nd edition)
  • [G] E. Giusti, Metodi diretti nel Calcolo delle Variazioni, U.M.I., Bologna, 1994. MR 2000f:49001
  • [MT1] C. Mariconda, G. Treu, A Comparison Principle and the Lipschitz continuity for minimizers, preprint, Dipartimento di Matematica pura e applicata 27 (1999).
  • [MT2] C. Mariconda, G. Treu, A Comparison Principle for minimizers, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 681-686. CMP 2000:14
  • [MT3] C. Mariconda, G. Treu, A gradient Maximum Principle for minima, preprint, Dipartimento di Matematica pura e applicata (2000).
  • [M] M. Miranda, Un teorema di esistenza e unicità per il problema dell'area minima in $n$variabili, Ann. Sc. Normale di Pisa 19 (1965), 233-249. MR 31:6144
  • [R] R.T. Rockafeller, Convex Analysis, Princeton University Press, Princeton, 1970.
  • [TV] G. Treu, M. Vornicescu, On the equivalence of two variational problems, Calculus of Variations and Partial Differential Equations 11 (2000), 307-319. MR 2001h:49007

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 49J52, 49J99, 49K30, 49N60

Retrieve articles in all journals with MSC (2000): 49J52, 49J99, 49K30, 49N60


Additional Information

Carlo Mariconda
Affiliation: Dipartimento di Matematica pura e applicata, Università di Padova, 7 via Belzoni, I-35131 Padova, Italy
Email: maricond@math.unipd.it

Giulia Treu
Affiliation: Dipartimento di Matematica pura e applicata, Università di Padova, 7 via Belzoni, I-35131 Padova, Italy
Email: treu@math.unipd.it

DOI: https://doi.org/10.1090/S0002-9939-01-06370-5
Keywords: Barrier, Euler equation, existence of minima, Lavrentiev, Lipschitz regularity
Received by editor(s): May 20, 2000
Published electronically: September 19, 2001
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society