SUBGROUP GROWTH IN SOME PRO-p GROUPS

YIFTACH BARNEA AND ROBERT GURALNICK

(Communicated by Lance W. Small)

Abstract. For a group G let $a_n(G)$ be the number of subgroups of index n and let $b_n(G)$ be the number of normal subgroups of index n. We show that $a_{p^k}(\text{SL}_2(\mathbb{F}_p[[t]])) \leq p^{k(k+5)/2}$ for $p > 2$. If $\Lambda = \mathbb{F}_p[[t]]$ and p does not divide d or if $\Lambda = \mathbb{Z}_p$ and $p \neq 2$ or if $p = 2$, we show that for all k sufficiently large $b_{p^k}(\text{SL}_2(\Lambda)) = b_{p^{k+2}-1}(\text{SL}_2(\Lambda))$. On the other hand if $\Lambda = \mathbb{F}_p[[t]]$ and p divides d, then $b_n(\text{SL}_2(\Lambda))$ is not even bounded as a function of n.

1. Introduction

For a group G, let $a_n(G)$ be the number of subgroups of index n. Lubotzky and Mann [LM] proved that a pro-p group G is p-adic analytic if and only if it has polynomial subgroup growth; that is, there exists a constant c such that $a_n(G) \leq n^c$ (for background on p-adic analytic pro-p groups the reader is referred to [DDMS]). In [Sh, Corollary 2.5] Shalev proved the following:

Theorem 1.1. Let G be a pro-p group which satisfies

\[a_n(G) \leq n^{c \log p n} \]

for some constant $c < \frac{1}{8}$. Then G is p-adic analytic.

Following this result Mann [Ma] asked the following:

Question. What is the supremum of the numbers c, such that if G is a pro-p group and $a_n(G) < n^{c \log p n}$ for all large n, then G is p-adic analytic?

To continue our discussion we need the following definition.

Definition 1.1. Let Λ be a local ring with a maximal ideal M. We define the n-congruence subgroup of $SL_d(\Lambda)$ to be

\[SL_d^n(\Lambda) = \ker(SL_d(\Lambda) \to SL_d(\Lambda/M^n)). \]

The particular examples of local rings we deal with are $\Lambda = \mathbb{Z}_p$, the p-adic integers, and $M = p\mathbb{Z}_p$ or $\Lambda = \mathbb{F}_p[[t]]$, formal power series over a field of p-elements, and $M = t\mathbb{F}_p[[t]]$. It is well known that for these examples Λ, $SL_d(\Lambda)$ is a pro-p group. Moreover, $SL_d^1(\mathbb{F}_p[[t]])$ is not p-adic analytic. In [Sh] it is already shown that $a_{p^k}(SL_d^1(\mathbb{F}_p[[t]])) \leq Ap^{2k^2}$ for $p > 2$ and some constant A. We show the following:
Theorem 1.2. Let $G = SL_d^1(F_p[[t]])$ with $p > 2$. Then $a_{p^k}(G) \leq p^{(k+5)/2}$.

Thus in answer to Mann’s question we show that the supremum is no more than $\frac{1}{2}$ (for $p > 2$).

We now turn our attention to the study of the lattice of normal subgroups of $SL_d^1(\Lambda)$, for $\Lambda = \mathbb{Z}_p$ and $\Lambda = F_p[[t]]$. Let us recall that a group G is called just infinite if its only nontrivial normal subgroups are of finite index. It is well known that if $p \neq 2$ or $d \neq 2$, then $SL_d^1(\Lambda)$ is just infinite (this is actually shown in the proof of Lemma 3.11). In [29] Proposition 3.5.1 it is shown that the lattice of normal subgroups of another just infinite pro-p group, J_p, the Nottingham group is “periodic” ($p > 3$). In particular for any k, $b_{p^k}(J_p) = b_{p^{k+1}}(J_p)$. We show the following:

Theorem 1.3. Suppose $\Lambda = F_p[[t]]$ and p does not divide d or $\Lambda = \mathbb{Z}_p$ and $p \neq 2$ or $d \neq 2$. There is a constant $K = K(p, d)$ such that $b_{p^k}(SL_d^1(\Lambda)) = b_{p^{k+2^2-1}}(SL_d^1(\Lambda))$ for all $k > K$.

Theorem 1.3 and the result for the Nottingham group might suggest that for any just infinite pro-p group a similar phenomenon occurs. The following theorem is thus somewhat surprising, as it shows that there is a big difference in the behavior of $b_n(SL_d^1(F_p[[t]]))$ in the case p divides d.

Theorem 1.4. If p divides d, then $b_n(SL_d^1(F_p[[t]]))$ is not bounded as a function of n.

Our main tool in this paper is Lie methods. It would be interesting to find a proof of Theorem 1.3 in the case $\Lambda = \mathbb{Z}_p$ based on powerful groups. This might help to handle the case where $p = d = 2$.

2. LIE METHODS

Suppose $\Lambda = \mathbb{Z}_p$ or $\Lambda = F_p[[t]]$. Let $G_n = SL_d^1(\Lambda)$. It is straightforward to see that $(G_n, G_m) \subseteq G_{n+m}$ and $G_n^2 \subseteq G_{n+1}$. Thus G_n/G_{n+1} is an elementary abelian p-group. It is easy to verify that $|G_n/G_{n+1}| = p^{d^2-1}$ and indeed this quotient is the adjoint module for $SL_d(F_p)$.

The reader is referred to [LSh] for more details on the following construction. Define

$$L(G_1) = \sum G_n/G_{n+1}.$$

If $x \in G_n$ and $y \in G_m$, we define the bracket product

$$[xG_{n+1}, yG_{m+1}] = (x, y)G_{n+m+1}.$$

Extending this product by linearity gives $L(G_1)$ the structure of a Lie algebra over F_p. It is not hard to check that $L(G_1) \cong sl_d(F_p)[t]$ — the set of polynomials with 0 constant coefficient over $sl_d(F_p)$.

Let H be a closed subgroup of G_1. We define

$$L(H) = \sum (H \cap G_n)G_{n+1}/G_{n+1}.$$

The following facts are easy to verify:

1. $L(H)$ is graded subalgebra of $L(G_1)$.
2. If $K \subseteq H$ are closed subgroups, then $L(K) \subseteq L(H)$ and dim($L(H)/L(K)$) = \log_p[H : K].
3. If \(H\) is normal, then \(L(H)\) is an ideal.
4. \(G_n \leq H\) if and only if \(t^n sl_t(F_p)[t] \subseteq L(H)\).
5. If \(L(H)\) is generated by \(d\) homogeneous elements, then \(d(H) \leq d\), where \(d(H)\) is the minimal number of elements required to generate \(H\) topologically.

Let us remark that one can associate to the group \(G_1/G_n\) the Lie algebra \(tsl_t(F_p)[t]/(t^n)\). Similar results to the above holds for subgroups and subalgebras.

3. THE SUBGROUP GROWTH OF \(SL_2(F_p[[t]]\))

We first consider a question about generation of Lie subalgebras of \(L = tsl_2(F_p)[t]/(t^{n+1})\). There should be an analogous result for other simple Lie algebras. Note that there exist Lie subalgebras of \(L\) which require the maximum number of generators given in the result.

Proposition 3.1. Let \(L = tsl_2(F_p)[t]/(t^{n+1})\) with \(p > 2\). If \(H\) is a graded subalgebra of \(L\) of dimension \(d\) and codimension \(c\), then \(H\) can be generated by \(\min\{c+3, d\}\) elements. In particular, \(H\) can be generated by no more than \(\frac{3}{2}(n+1)\) homogeneous elements.

Proof. First note that the second statement follows from the first since \(H\) can be generated by \((1/2)(c + d + 3) = (3/2)(n + 1)\) homogeneous elements.

Let \(H = H_1 t^{+} \cdots \otimes H_0 t^n\), where \(H_i \subseteq tsl_2(F_p)\), and let \(h_i = \dim H_i\). Similarly, let \(H'_i\) denote the degree \(i\) component of the derived algebra \([H, H]\) and set \(h'_i = \dim H'_i\).

We recall that if \(M\) is a nilpotent Lie algebra and \(S\) is a subalgebra, then \(S = M\) if and only if \(S + [M, M] = M\) [Exercise I.10]. In particular, this implies that if \(M\) is a finite dimensional graded nilpotent Lie algebra, then \(M\) can be generated by \(\dim(M/[M, M])\) homogeneous elements (of course, this is also the minimum number of generators required).

We also recall that \(sl_2(F_p)\) \((p > 2)\) is a simple Lie algebra and therefore a perfect Lie algebra, namely equals its derived subalgebra. Let \(V, U\) be subspaces of \(sl_2(F_p)\).

As \(\dim sl_2(F_p) = 3\), it is easy to verify the following facts:

1. If \(\dim V = 2\), then \([V, sl_2(F_p)] = sl_2(F_p)\).
2. If \(\dim V = 1\), then \(\dim [V, sl_2(F_p)] = 2\).
3. If \(\dim V = 2\), then \(\dim [V, V] = 1\).
4. If \(V \neq U\) and \(\dim V = \dim U = 2\), then \([V, U] = sl_2(F_p)\).
5. If \(\dim V = 2\) and \(\dim U = 1\), then \(\dim [V, U] \leq 2\).

Of course, \(H\) can always be generated by \(d\) homogeneous elements.

We use an induction on \(n\). For \(n = 1, 2\), the result is clear. If \(h'_n = 0\), then for all \(1 \leq i < n\), \([H_i, H_{n-i}] \subseteq H'_i\); therefore \(h_i + h_{n-i} \leq 3\). Thus, \(c \geq (3/2)(n - 1)\) and \(d \leq c + 3\). Note in fact this argument is valid under the weaker assumption that \(h_i + h_{n-i} \leq 3\) for all \(1 \leq i < n\).

So we assume that \(h_i + h_{n-i} \geq 4\) for some \(i\). Let \(j\) be the smallest positive integer such that \(h_j + h_{n-j} \geq 4\).

If \(h_i + h_{n-i} \geq 5\) for some \(i\), then \(h'_n = 3\). If \(h'_n = 3\), then by induction \(H/H_nt^n\) can be generated by at most \(c + 3\) homogeneous elements. Since \(H_nt^n \subseteq [H, H]\), this implies the same for \(H\).

So we may assume that \(h_i + h_{n-i} \leq 4\) for all \(i\) and that \(h'_n \leq 2\).

Let \(\Delta\) denote the set of integers with \(h_i + h_{n-i} = 4\). Set \(e = |\Delta|\). We notice that \(d \leq 3 + (3/2)(n - 1) + e/2\) and \(c \geq (3/2)(n - 1) - e/2\). Thus \(d - e \leq c + 3\). Since \(j\) is minimal in \(\Delta\), \(n - j\) is maximal in \(\Delta\) and so \(i + j \leq n\) for all \(i \in \Delta\).
First suppose that \(h_j \geq 2 \). Then \([H_j t^i, H_i t^j] \neq 0 \) for any \(i \in \Delta \) and since these spaces are independent, it follows that \(\dim[H, H] \geq e \). Thus, \(\dim H/[H, H] \leq d - e \leq c + 3 \) as required.

Finally, consider the case that \(h_j = 1 \) (and so \(h_{n-j} = 3 \) and \(h_i = 2 \)). Let \(i \in \Delta \). So either \(h_i = h_{n-i} = 2 \) and \([H_j t^i, H_{m} t^m] \neq 0 \) for \(m = i, n - i \) or exactly one of \(h_i, h_{n-i} = 3 \). Thus, \([H_j t^i, \bigoplus_{i \in \Delta} H_i t^i] \) has dimension at least \(e \). So \([H, H] \) has dimension at least \(e \) and as in the previous paragraph, we deduce that \(\dim H/[H, H] \leq e + 3 \).

Proof of Theorem 4.1. Let \(G_i = SL_2^i(F_p[[t]]) \). The \(G_i \) are a base for the neighborhoods of the identity. As \(G \) is finitely generated for any given \(k \), there is \(m \) big enough such that \(G_m \) is contained in all subgroups of index \(p^k \) (actually Shalev [Sh] Theorem 4.1) proved that \(m = k + 1 \) is sufficient). Therefore \(a_{p^k}(G) = a_{p^k}(G/G_m) \).

For any group \(H \) let \(g_n(h) \) be the supremum on the number of generators of subgroups of index \(n \). From [LSh, Lemma 4.1] we see that

\[
a_{p^k}(G) = a_{p^k}(G/G_m) \leq p^{\dim(G/G_m)} + g_p(G/G_m) + \cdots + g_{p^{k-1}}(G/G_m).
\]

By fact 5 in Section 2, the remark following it and Proposition 3.1 we deduce that

\[
a_{p^k}(G_1) \leq p^{0 + 1 + 2 + \cdots + (k-1) + 3k} = p^{k(k+5)/2}.
\]
Let t be maximal such that, for all $i \geq 1$, $\binom{d}{i}p^ni \mod p^t \equiv 0$. We notice that when $n > s$, $t = n + s$. Hence $t - n$ is bounded by a function of p and d. As $1 = \det(x) = \det((1 + p^n\lambda)I)\det(I + C)$ and $\det((1 + p^n\lambda)I) \mod p^{t+1} \neq 0$, one can deduce that $C \mod p^{t+1} \neq 0$; moreover as p divides d, $C \mod p^{t+1}$ is not a scalar.

It is not hard to find an element $y \in G$ which has the form $y = I + D$, where $D \in pM_d(\mathbb{Z}_p)$ and $[D, C] \mod p^{t+2}$ is not a scalar. Set $z = (x, y) \in G_{t+1}$. We leave to the reader to verify that $z = I + E$, where $E \in p^{t+1}M_d(\mathbb{Z}_p)$, and $E \mod p^{t+2} = [D, C]$. From here the proof goes as in the case where p divides d, where we replace x by z, and noticing that $t + d^2 - n$ is bounded in terms of p and d.

Remarks. 1. The case where p does not divide d already appeared in an unpublished preprint by Aner Shalev.

2. In the course of the proof we actually showed that if $\Lambda = \mathbb{F}_p[[t]]$ and p does not divide d or $\Lambda = \mathbb{Z}_p$ and $p \neq 2$ or $d \neq 2$, then G is just infinite.

3. A similar argument to the case where $\Lambda = \mathbb{Z}_p$ and p divides d can be used to show that G is just infinite even when $\Lambda = \mathbb{F}_p[[t]]$ as long as $p \neq 2$ or $d \neq 2$.

We note that conjugation in G induces a structure of G-set on G_n/G_{n+d^2-1} for all n.

Lemma 4.2. Suppose $\Lambda = \mathbb{F}_p[[t]]$ and p does not divide d or $\Lambda = \mathbb{Z}_p$ and $p \neq 2$ or $d \neq 2$. Let f be as in the previous lemma. Then there is one to one correspondence between the set of normal subgroups of G and the pairs (n, H) such that H is a subgroup of G_n/G_{n+f} which is not contained in G_{n-1}/G_{n+f} and H is G-invariant.

Proof. Let N be a normal subgroup of G. By Lemma 4.1 we can find n such that $G_{n+f} < N \leq G_n$. We choose n to be maximal. Let $H = N/G_{n+f}$. Since n is maximal, H is not contained in G_{n-1}/G_{n+f}. As N is normal, H is G-invariant.

On the other hand, given a pair (n, H), we take N to be the pre-image of H under the quotient map from G_n onto G_n/G_{n+f}. It is easy to verify that these maps are the inverses of each other.

Lemma 4.3. Let f be some constant. Then for $n > f$ there is a map

$$\varphi : G_n/G_{n+f} \to G_{n+1}/G_{n+f+1}$$

such that φ is an equivariant group isomorphism and

$$\varphi(G_{n+1}/G_{n+f}) = G_{n+2}/G_{n+f+1}.$$

Proof. First let us deal with the case $\Lambda = \mathbb{F}_p[[t]]$. Notice that every element of G_n has the form $I + A$, where $A \in t^nM_d(\mathbb{F}_p[[t]])$. We leave to the reader to check that if $n > f$, then the fact that the determinants of elements in G are one implies that $\text{Trace}(A) \mod t^{n+f} \equiv 0$. On the other hand if $\text{Trace}(A) \mod t^{n+f} \equiv 0$, then one can construct (using induction) an element in G_n of the above form.

We define a map

$$\varphi : G_n/G_{n+f} \to G_{n+1}/G_{n+f+1}.$$

By

$$\varphi((I + A)G_{n+f}) = (I + tA)G_{n+f+1}$$
(this is a slight abuse of notation as $I + tA$ does not necessarily have determinant 1). It is easy to check that φ satisfies the required conditions.

For $A = \mathbb{Z}_p$ the argument is very similar when we replace t by p. \hfill \Box \\

Proof Theorem 1.3 Let f be as in Lemma 4.1. For $n > f$ we define $c(s)$ to be the number of G-invariant subgroups of G_n/G_{n+k} which are not contained in G_{n+1}/G_{n+k} and have index p^s. By Lemma 4.3 this is well defined and in particular does not depend on n.

Let us define $b_{k,n}(G)$ to be the number of normal subgroups of index p^k of G which contain G_{n+f} and are contained in G_n and n is maximal under this property. If H is a normal subgroup of index p^k, then by Lemma 4.1 there is n such that $G_{n+f} < H \leq G_n$. We deduce that $p^{(n+f-1)(d^2-1)} > p^k \geq p^{(n-1)(d^2-1)}$; thus $\frac{k}{d^2-1} + 1 - f < n \leq \frac{k}{d^2-1} + 1$. We note that if $k > (2f-1)(d^2-1)$, then $n > f$.

By Lemma 4.2 and the above argument we see that for $n > f$ the following is true:

$$b_{k,n}(G) = \begin{cases} 0 & \text{if } n \leq \frac{k}{d^2-1} + 1 - f, \\ 0 & \text{if } \frac{k}{d^2-1} + 1 < n, \\ c(k - (n-1)(d^2-1)) & \text{otherwise.} \end{cases}$$

By Lemma 4.2 for $k > (2f-1)(d^2-1)$

$$b_{p^k}(G) = \sum_{n \geq 1} b_{k,n}(G) = \sum_{\frac{k}{d^2-1} + 1 - f < n \leq \frac{k}{d^2-1} + 1} c(k - (n-1)(d^2-1)).$$

Thus $b_{p^k}(G)$ depends only on k mod $d^2 - 1$ for $k > (2f-1)(d^2-1)$. \hfill \Box \\

Proof of Theorem 1.4. We note that G_n/G_{2n} is an elementary abelian p-group; moreover G_n/G_{2n} is a G-module. Let $x \in G_n$ and let us write $x = I + A$, where $A \in t^nM_d(\mathbb{F}_p[[t]])$. We note that $\det(x) = 1$ implies that $\text{Trace}(A) \text{ mod } t^{2n} = 0$. On the other hand suppose $\text{Trace}(A) \text{ mod } t^{2n} = 0$; then one can construct (using induction) an element in G_n of the above form. As p divides d if $A \text{ mod } t^{2n}$ is a scalar, then $\text{Trace}(A) \text{ mod } t^{2n} = 0$. We also note that if $A \text{ mod } t^{2n}$ is a scalar, then G acts trivially on $\langle xG_{2n} \rangle$. Let N_x be the pre-image of $\langle xG_{2n} \rangle$ in G_n. This is a normal subgroup of G of index $p^{(2n-1)(d^2-1)-1}$. Of course the number of such subgroups is equal to the number of $A \in t^nM_d(\mathbb{F}_p[[t]])$ such that $A \text{ mod } t^{2n}$ are nonzero scalars divided by $p-1$. Therefore $b_{p^{(2n-1)(d^2-1)-1}}(G) \geq (p^n-1)/(p-1)$. \hfill \Box \\

Acknowledgments

The authors would like to thank Dan Segal for his careful reading of an earlier version and some helpful comments.

References

A. Shalev, Growth functions, p-adic analytic groups, and groups of finite coclass, J. London Math. Soc. 46 (1992), 111–122. MR 94a:20047