ON THE TOTAL CURVATURE OF CONVEX HYPERSURFACES IN HYPERBOLIC SPACES

ALBERT BORBÉLY

(Communicated by Wolfgang Ziller)

ABSTRACT. Let $C_1 \subseteq C_2 \subseteq H^n$ be two convex compact subsets of the hyperbolic space H^n with smooth boundary. It is shown that the total curvature of the hypersurface ∂C_2 is larger than the total curvature of ∂C_1.

0. Introduction

Let M^n be an n-dimensional Riemannian manifold and let F be an $(n-1)$-dimensional smooth immersed hypersurface. Denote by $A_q : T_q F \to T_q F$ the shape operator of F at $q \in F$ with respect to a normal field defined in a neighborhood of q and set $K(q) = det A_q$. This is well defined up to sign. When M is the Euclidean space, it is called the Gauss-Kronecker curvature. We adopt the same name for K in general although it is no longer an intrinsic quantity of the hypersurface.

Let H^n denote the hyperbolic space and let $C_0 \subseteq C_1$ be two convex compact subsets with smooth boundaries. The goal of the paper is to show:

Theorem 1. With the notations introduced above we have

$$\int_{\partial C_0} K \leq \int_{\partial C_1} K.$$

Here, K is computed with respect to the outward normal field of ∂C_i, $i = 0, 1$, and $Vol(S^{n-1})$ denotes the Euclidean $(n-1)$-dimensional volume of the unit sphere S^{n-1}.

It is well known that if C is a convex compact subset of the Euclidean space, then

$$\int_F K = Vol(S^{n-1}).$$

In a general Hadamard manifold M^n, as a result of the Gauss-Bonnet theorem, we have for $n = 2$

$$Vol(S^{n-1}) \leq \int_{\partial C_0} K \leq \int_{\partial C_1} K.$$

Received by the editors February 15, 2000 and, in revised form, September 20, 2000.

1991 Mathematics Subject Classification. Primary 53C21.

Key words and phrases. Total curvature, Gauss-Kronecker curvature, isoperimetric inequality.

This research was supported by the Kuwait University Research Grant SM 03/99.

©2001 American Mathematical Society
and for $n = 3$

$$Vol(S^{n-1}) \leq \int_{\partial C_0} K.$$

It seems natural to wonder to what extent the above statements will hold in higher dimensions. Some partial results with respect to (2) were obtained in [1]. Although we have precise results about certain integrals on hypersurfaces due to Chern (the curvature integral [2]), the generalized Gauss-Bonnet-Chern theorem does not seem to help in higher dimension (at least not in an obvious way).

There is another motivation for trying to show that (2) is satisfied for a general nonpositively curved manifold. This is the so-called isoperimetric conjecture (see [3], [4]).

Isoperimetric Conjecture. Let M^n be a Hadamard manifold and $D \subset M^n$ be a compact domain with smooth boundary. Then it satisfies the Euclidean isoperimetric inequality:

$$\text{area}(\partial D) \geq d_n(\text{vol}(D))^{\frac{n-1}{n}},$$

where $d_n = \text{area}(S^{n-1})/(\text{vol}(B^n))^{\frac{n-1}{n}}$.

This is now settled in dimension 4 by [3] and in dimension 3 by [1]. In fact, the main part of the proof in [3] is to show how (2) implies the isoperimetric inequality. Although it was carried out in dimension 3 only, it is very likely (and is explicitly mentioned in [3]) that it generalizes to higher dimensions. This means that a possible way of proving the isoperimetric conjecture is to establish (2) for a general Hadamard manifold.

1. Construction of a differential form

This is a general construction due to Chern [1] which works on any Riemannian manifold M^n. Our notation follows the notation of the original paper.

Let e_n be a unit normal field defined on some open subset of M^n. At each point extend this to an orthonormal frame e_1, \ldots, e_n such that e_i is a smooth vector field for $i = 1, \ldots, n$. At least locally it is certainly possible. We now define the connection forms as

$$\omega^i_j(X) = \langle \nabla_X e_j, e_i \rangle,$$

where $\langle \cdot, \cdot \rangle$ denotes the metric on M^n and X is a vector field. The curvature form is defined as

$$\Omega^i_j(X, Y) = -\langle R(X, Y)e_j, e_i \rangle,$$

where $R(X, Y)$ denotes the curvature tensor defined as: $R(X, Y)Z = \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z + \nabla_{[X, Y]} Z$. Then Cartan’s second structural equation reads as

$$\Omega^i_j = d\omega^i_j + \omega^i_k \omega^k_j,$$

where we use the usual summation convention, summing over repeated indices.

The differential form which is of interest to us is defined as:

$$\Phi = \omega^1_n \omega^2_n \cdots \omega^{n-1}_n.$$

This is an $(n-1)$-form on M^n which is essentially the same as Chern’s form denoted by Φ_0 in [2]. More precisely, Φ_0 is an $(n-1)$-form on the unit tangent bundle and
\(\Phi\) is its pull back via the map \(E_n : M^n \to TM^n\) defined as \(E_n(p) = e_n(p)\). As a consequence we have the following important observation:

Fact. The differential form \(\Phi\) depends only on the vector field \(e_n\). It does not depend on how \(e_n\) is extended to an orthonormal frame \(e_1, ..., e_n\).

From the second structural equation (4) one can derive that

\[
\rho = \sum \epsilon_{i_1...i_{n-1}} \Omega_n^{i_1} \omega_N^{i_2} ... \omega_N^{i_{n-1}},
\]

where \(\epsilon_{i_1...i_{n-1}}\) is the Kronecker index which is equal to +1 or -1 according to whether the permutation \(i_1...i_{n-1}\) of the numbers 1, 2, ..., \(n-1\) is even or odd and the summation is extended over all the indices \(i_1...i_{n-1}\) subject to the condition \(i_2 < i_3 < ... < i_{n-1}\). It is essentially the same as the \(n\)-form \(\Psi_0\) in [2].

2. Convex exhaustion

The other important ingredient is a lemma about convex exhaustion. Although we only need this in the hyperbolic space we state it for Hadamard manifolds. We say that a convex set \(C\) with smooth boundary is strictly convex if the second fundamental form of the boundary (with respect to the outward normal) is positive definite everywhere.

Lemma 1. Let \(M^n\) be a Hadamard manifold and \(C_0 \subset int(C_1)\) be two compact strictly convex subsets with smooth boundary. Then there exists a continuous function \(F : C_1 - int(C_0) \to [0,1]\) which is smooth in the interior such that: \(\nabla F \neq 0, \partial C_i = \{p \in C_2 - int(C_1) : F(p) = i\} \) for \(i = 0, 1\) and the sublevel sets \(C_b = \{p \in C_2 - int(C_1) : F(p) \leq b\}\) for \(0 \leq b \leq 1\) are convex.

Proof. The statement is clear intuitively. Denote by \(t\) the distance function from the set \(\partial C_i\) for \(i = 0, 1\).

For \(\delta > 0\) we set \(N_{2\delta} = \{p \in C_1 : t(p) < 2\delta\}\). Since \(\partial C_1\) has a positive definite second fundamental form, we can choose \(\delta > 0\) small enough such that: \(3\delta < dist(C_0, \partial C_1)\), the function \(t\) is smooth on \(N_{2\delta}\) (there are no focal points of \(\partial C_1\) inside \(N_{2\delta}\)) and

\[
-D^2 t > c_1 > 0,
\]

when restricted to \(\nabla t^+\) for some positive constant \(c_1\). Here, \(D^2 t\) denotes the Hessian and we adapted the notation that \(-D^2 t > c_1\) on \(\nabla t^+\) if \(-D^2 t(X, X) > c_1\) for every unit tangent vector \(X \in \nabla t^+\). We observe also that on \(N_{2\delta}\) the following inequality holds for the angle between the gradients:

\[
\angle(\nabla t, -\nabla t) < \pi/2 - \alpha,
\]

for some \(\alpha > 0\) depending on \(\delta\).

We are going to construct \(F\) in the form

\[
F = 1 - e^{-a t} f^\epsilon.
\]

Here \(f = h(t)\) is the reparametrized distance function from \(\partial C_1\) and \(h\) is a fixed smooth increasing real function \(h : [0, \infty) \to [0, 1]\) such that \(h(t) = \frac{1}{2\delta} t\) for \(0 \leq t \leq \delta\) and \(h(t) = 1\) on \([2\delta, \infty)\). For the derivative and the Hessian of \(f\) we have

\[
d^f = h \, d^t t \quad \text{and} \quad D^2 f = h'' d^t t \otimes t + h' D^2 t.
\]

The choice of \(a, \epsilon\) will be discussed later.
First, we show that the derivative of F is never zero. From the definition we obtain
\begin{equation}
 dF = e^{-a_\theta_0} f^\epsilon (ad_\theta_0 - \epsilon \frac{d}{df}).
\end{equation}

Then, taking into consideration that $\nabla f \parallel \nabla \theta_1$, the statement follows from (7).

To show that the sublevel sets are convex we need to show that the Hessian $D^2 F$ is positive definite on ∇F^\perp. We have
\begin{equation}
 D^2 F = e^{-a_\theta_0} (-a^2 d\theta_0 \otimes d\theta_0 + aD^2 \theta_0) f^\epsilon \\
 + \epsilon e^{-a_\theta_0} f^{\epsilon - 1} \left(\frac{1}{f} \frac{d}{df} \otimes \frac{d}{df} - D^2 f \right) \\
 + \epsilon e^{-a_\theta_0} f^{\epsilon - 1} (d\theta_0 \otimes d\theta_0 + d\theta \otimes d\theta_0).
\end{equation}

The argument depends on certain estimates of the Hessians $D^2 \theta_i$ for $i = 0, 1$, on various subspaces. It will be useful to keep in mind that θ_i (for $i = 0, 1$) are distance functions; therefore the gradients $\nabla \theta_i$ are eigenvectors of $D^2 \theta_i$ with eigenvalue zero.

First, we consider the region where $f \equiv 1$. On this region $df, D^2 f = 0$ and $\nabla F \parallel \nabla \theta_0$. Therefore $D^2 F = a f e^{-a_\theta_0} D^2 \theta_0$, when it is restricted to vectors in ∇F^\perp. But on this subspace $D^2 \theta_0$ is positive definite since it is the distance function from a convex set in a Hadamard manifold.

Next, we consider the region where $1/2 < f < 1$. Since C_0 is strictly convex and compact, we know that $D^2 \theta_0 > c_2 > 0$ for some $c_2 > 0$, when restricted to $(\nabla \theta_0)^\perp$. Therefore, taking (6) and (9) into account, we conclude that $D^2 \theta_0 > c_3 > 0$ for some positive constant c_3, when restricted to ∇F^\perp. So, for a small enough a, where the choice of a depends only on c_3, the term $aD^2 \theta_0$ will dominate $a^2 d\theta_0 \otimes d\theta_0$. This will remain true throughout the whole region $C_1 - C_0$. The derivatives of h are bounded and so are the terms df and $D^2 f$. Therefore, for a small enough ϵ, the term $aD^2 \theta_0$ will dominate all the other terms as well. The choice of ϵ depends on a and on the bounds for df and $D^2 f$.

At last, we consider the region where $0 < f < 1/2$. It is clear from the definition of the function f that this region is a subset of N_{ϵ}. As before, $aD^2 \theta_0$ will dominate $a^2 d\theta_0 \otimes d\theta_0$. The term involving $df \otimes df$ is positive semi-definite. As for the rest of the terms, we will show that the term involving $-D^2 f$ will dominate, for a small enough a, the term involving $d\theta_0 \otimes df + df \otimes d\theta_0$. Since h is linear on this region, from (6) we obtain $-D^2 f = -h' D^2 \theta_1 > c_3 / 2 > 0$, when restricted to $(\nabla \theta_1)^\perp$. Taking into consideration (7) and (9) we conclude that $-D^2 f > c_4 > 0$ for some sufficiently small $c_4 > 0$, when restricted to ∇F^\perp. The constant c_4 depends on c_1, δ and the angle α. So, if the constant $a > 0$ was chosen small enough, where the choice of a depended only on c_2 and c_4, then $-D^2 f$ dominates the term involving $d\theta_0 \otimes df + df \otimes d\theta_0$. This concludes the proof of the lemma. \hfill \Box

3. Proof of Theorem 1

With the preparation done in the previous sections, the proof of the theorem is simple. Let us return to the hyperbolic space H^n.

First, we prove the inequality between the two integrals. Assume that $C_0 \subset \text{int}(C_1)$ and both sets are strictly convex. We are going to show that
\begin{equation}
 \int_{\partial C_0} K \leq \int_{\partial C_1} K.
\end{equation}
The general case will follow by a trivial limiting procedure.

Let F be the smooth function of Lemma 1 and define the unit vector field e_n by $e_n = \nabla F/|\nabla F|$. This is defined on $\text{int}(C_1) - C_0$ but it extends continuously to the boundary. To the vector field e_n we construct the form Φ as in the previous section and by Stokes’s theorem we have

\begin{equation}
\Phi = \int_{C_1 - C_0} d\Phi.
\end{equation}

To evaluate the integrals in (12) we are going to compute the forms Φ and $d\Phi$. Let $q \in C_1 - \text{int}(C_0)$ be an arbitrarily chosen point.

Since Φ depends only on the vector field e_n, we can express Φ in a special frame. Let us choose the frame e_1, \ldots, e_n such that at the point $q \in C_1 - \text{int}(C_0)$ the vectors e_1, \ldots, e_{n-1} are the principal directions for the hypersurface $\{F = F(q)\}$. For the other points of the hypersurface the vectors e_1, \ldots, e_{n-1} may no longer be principal directions. Then, from the definition of the ω^n_i’s we have

\begin{equation}
\omega^n_i(e_j) = \delta^n_{ij} \lambda_j, \quad \text{for } 1 \leq i, j \leq n - 1
\end{equation}

at $q \in C_1 - \text{int}(C_0)$, where λ_j denotes the principal curvature at q of the hypersurface $\{F = F(q)\}$ in the direction of e_j and δ^n_{ij} is the Kronecker symbol. Therefore

$\Phi(e_1, \ldots, e_{n-1}) = \lambda_1 \cdot \ldots \cdot \lambda_{n-1} = K$

at $q \in C_1 - \text{int}(C_0)$, where K denotes the Gauss-Kronecker curvature of the hypersurface $\{F = F(q)\}$ with respect to the normal field e_n. Since $q \in C_1 - \text{int}(C_0)$ was chosen arbitrarily, the left-hand side of (12) reads as follows:

$$
\int_{\partial C_0 \cup \partial C_1} \Phi = e_n \iota_{\pi_{12\ldots n-1}}(\int_{\partial C_1} K - \int_{\partial C_0} K) = (-1)^{n-1}(\int_{\partial C_1} K - \int_{\partial C_0} K).
$$

The curvature tensor has the form $\Omega^n_i(e_j, e_k)$ from this and (13) we have

\begin{equation}
\Omega^n_i(e_j, e_k) = 0
\end{equation}

if $\{j, k\} \neq \{i, n\}$ as sets. From this and (13) we have

\begin{equation}
\Omega^n_i(e_{i_1}, e_{i_2}, \ldots, e_{i_{n-1}}) = e_{i_1} i_2 \ldots i_{n-1} K_{i_1 i_2 \ldots i_{n-1}} \lambda_{i_2} \cdot \ldots \cdot \lambda_{i_{n-1}}
\end{equation}

at $q \in C_1 - \text{int}(C_0)$, where the indices satisfy the condition $i_2 < i_3 < \ldots < i_{n-1}$ and $K_{i_1 i_2 \ldots i_{n-1}}$ denotes the sectional curvature of the two-plane determined by e_{i_1}, e_{i_n} and λ_i is the principal curvature at the point $q \in C_1 - \text{int}(C_0)$ in the direction of e_{i_i}. Then (12) reads as follows:

$$
\int_{\partial C_1} K - \int_{\partial C_0} K = \int_{C_1 - C_0} \sum_{i_2 < i_3 < \ldots < i_{n-1}} K_{i_1 i_2 \ldots i_{n-1}} \lambda_{i_2} \cdot \ldots \cdot \lambda_{i_{n-1}},
$$

where the summation is extended over all the indices $i_1 \ldots i_{n-1}$ subject to the condition $i_2 < i_3 < \ldots < i_{n-1}$.

Since all sublevel sets are convex, all the principal curvatures are positive. Therefore, the integral on the right-hand side is positive. This completes the proof of the theorem, when $C_0 \subset \text{int}(C_1)$ and both sets are strictly convex. The general case follows by slightly "blowing up" the sets; that is, instead of C_0 we consider an η-neighborhood C_0 and instead of C_1 we take a 2η-neighborhood $C_1 + 2\eta$. These are now strictly convex sets satisfying the conditions set forth at the beginning of the proof. Then letting η go to 0 will yield the general case.
All that remains is to prove the inequality
\[\text{Vol}(S^{n-1}) \leq \int_{\partial C_0} K. \]
This is a simple consequence of (11). Choose a ball \(B_\epsilon \) inside \(C_0 \). Applying (11), we obtain
\[\int_{\partial B_\epsilon} K < \int_{\partial C_0} K. \]
Letting \(\epsilon \) go to 0 will yield the desired inequality. This completes the proof of the theorem.

REFERENCES

Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
E-mail address: borbely@mcs.sci.kuniv.edu.kw