Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Unmixed local rings with minimal Hilbert-Kunz multiplicity are regular


Authors: Craig Huneke and Yongwei Yao
Journal: Proc. Amer. Math. Soc. 130 (2002), 661-665
MSC (1991): Primary 13D40, 13A30, 13H10
Published electronically: August 29, 2001
MathSciNet review: 1866016
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new and simple proof that unmixed local rings having Hilbert-Kunz multiplicity equal to $1$ must be regular.


References [Enhancements On Off] (What's this?)

  • [BH] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
  • [Ha] D. Hanes, Special conditions on maximal Cohen-Macaulay modules, and applications to the theory of multiplicities, Thesis, University of Michigan, 1999.
  • [Ku1] Ernst Kunz, On Noetherian rings of characteristic 𝑝, Amer. J. Math. 98 (1976), no. 4, 999–1013. MR 0432625
  • [Ku2] Ernst Kunz, Characterizations of regular local rings for characteristic 𝑝, Amer. J. Math. 91 (1969), 772–784. MR 0252389
  • [Mo] P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983), no. 1, 43–49. MR 697329, 10.1007/BF01457082
  • [Na] Masayoshi Nagata, Local rings, Robert E. Krieger Publishing Co., Huntington, N.Y., 1975. Corrected reprint. MR 0460307
  • [Sa] Pierre Samuel, La notion de multiplicité en algèbre et en géométrie algébrique, J. Math. Pures Appl. (9) 30 (1951), 159–205 (French). MR 0048103
    Pierre Samuel, La notion de multiplicité en algèbre et en géométrie algébrique. II, J. Math. Pures Appl. (9) 30 (1951), 207–274 (French). MR 0048104
  • [WY] K. Watanabe, K. Yoshida, Hilbert-Kunz multiplicity and an inequality between multiplicity and colength, J. Algebra 230 (2000), 295-317. CMP 2000:16

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 13D40, 13A30, 13H10

Retrieve articles in all journals with MSC (1991): 13D40, 13A30, 13H10


Additional Information

Craig Huneke
Affiliation: Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
Email: huneke@math.ukans.edu

Yongwei Yao
Affiliation: Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
Email: yyao@math.ukans.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-01-06113-5
Keywords: Hilbert-Kunz, multiplicity, regular
Received by editor(s): June 5, 2000
Received by editor(s) in revised form: September 18, 2000
Published electronically: August 29, 2001
Additional Notes: The first author was partially supported by the NSF
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 2001 American Mathematical Society