Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Closed groups induced by finitary permutations and their actions on trees


Author: A. A. Ivanov
Journal: Proc. Amer. Math. Soc. 130 (2002), 875-882
MSC (1991): Primary 03C45
DOI: https://doi.org/10.1090/S0002-9939-01-06114-7
Published electronically: August 28, 2001
MathSciNet review: 1866044
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe permutation groups $G \le Sym(\omega)$such that $G$ is the closure of the subgroup of all elements with finite support and $G$ can be realized as $Aut(M)$ where $M$ is a saturated structure. We also study isometric actions of such groups on real trees.


References [Enhancements On Off] (What's this?)

  • 1. H.Bass, Some remarks on groups acting on trees, Comm. Alg. 4(1976), 1091 - 1126. MR 54:7634
  • 2. E.Bouscaren and M.C.Laskowski, S-homogeneity and automorphism groups, J. Symb. Logic 58 (1993), 1302 - 1322. MR 95c:03076
  • 3. R.M.Bryant and D.M.Evans, The small index property for free groups and relatively free groups, J. London Math. Soc. (2) 55 (1997), 363 - 369. MR 97m:20047
  • 4. C.C.Chang and H.J.Keisler, Model Theory. Studies in Logic, vol. 73, North-Holland, 1973. MR 53:12927
  • 5. J. Cossey, O.H.Kegel and G.Kovács, Maximal Frattini extensions, Arch. Math. 35 (1980), 210 - 217. MR 82f:20042
  • 6. M.Culler and K.Vogtmann, A group theoretic criterion for property FA, Proc. Amer. Math. Soc. 124(1996), 677 - 683. MR 96f:20040
  • 7. D.M.Evans, H.D.Macherson and A.A.Ivanov, Finite covers, in: Model Theory of Groups and Automorphism Groups, (D.M.Evans, ed.), London Math. Soc. Lecture Notes, vol. 244, Cambridge University Press, Cambridge, 1997, pp. 1 - 72. MR 2001a:03075
  • 8. L.Fuchs, Infinite Abelian Groups, 1 and 2. Academic Press, New York and London, 1971, 1973. MR 50:2362
  • 9. W.Hodges, I.M.Hodkinson, D.Lascar, S.Shelah, The small index property for $\omega$-stable $\omega$-categorical structures and for the random graph, J. London Math. Soc. (2) 48 (1993), 204 - 218. MR 94d:03063
  • 10. S.Koppelberg and J.Tits, Une propriété des produits directs infinis groupes finis isomorphes, C. R. Acad. Sci. Paris Sér. A 279 (1974), 583 - 585. MR 51:13058
  • 11. P.M.Neumann, The lawlessness of groups of finitary permutations, Arch. Math. 26 (1975), 561 - 566. MR 54:406
  • 12. P.M.Neumann, The structure of finitary permutation groups, Arch. Math. 27 (1976), 3 - 17. MR 53:5754
  • 13. J.Saffe, Categoricity and ranks, J. Symbol. Logic 49 (1984), 1379 - 1392. MR 86a:03034
  • 14. J. Saxl, S.Shelah and S.Thomas, Infinite products of finite simple groups, Trans. Amer. Math. Soc. 348 (1996), 4611 -4641. MR 97j:20031
  • 15. J.-P. Serre, Trees. Springer-Verlag, 1980. MR 82e:20083
  • 16. S.Shelah, Classification Theory. North-Holland, Amsterdam. 1978. MR 81a:03030
  • 17. J.Tits, A ``theorem of Lie-Kolchin" for trees, Contributions to Algebra: A Collection of Papers dedicated to Ellis Kolchin (H.Bass, P.J.Cassidy and J.Kovacic, eds.), Academic Press, New York, 1977, pp. 377 - 388. MR 58:28205
  • 18. J.K.Truss, Generic automorphisms of homogeneous structures, Proc. London Math. Soc. (3) 65(1992), 121 - 141. MR 93f:20008

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 03C45

Retrieve articles in all journals with MSC (1991): 03C45


Additional Information

A. A. Ivanov
Affiliation: Institute of Mathematics, Wrocław University, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Email: ivanov@math.uni.wroc.pl

DOI: https://doi.org/10.1090/S0002-9939-01-06114-7
Received by editor(s): March 28, 2000
Received by editor(s) in revised form: August 21, 2000, and September 11, 2000
Published electronically: August 28, 2001
Communicated by: Carl G. Jockusch, Jr.
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society