Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Extinction and decay estimates for viscous Hamilton-Jacobi equations in ${\mathbb{R}}^N$


Authors: Said Benachour, Philippe Laurençot and Didier Schmitt
Journal: Proc. Amer. Math. Soc. 130 (2002), 1103-1111
MSC (1991): Primary 35B40, 35B05, 35K55
DOI: https://doi.org/10.1090/S0002-9939-01-06140-8
Published electronically: October 1, 2001
MathSciNet review: 1873785
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider non-negative and integrable classical solutions to the Cauchy problem $u_t-\Delta u+\vert\nabla u\vert^p=0$ when $p\in (0,+\infty)$. For $p\in (0,N/(N+1))$ we prove that any such solution vanishes identically after a finite time. For higher values of $p$temporal decay estimates are obtained.


References [Enhancements On Off] (What's this?)

  • 1. M. Ben-Artzi and H. Koch, Decay of mass for a semilinear parabolic equation, Comm. Partial Differential Equations 24 (1999), 869-881. MR 2000a:35098
  • 2. S. Benachour and Ph. Laurençot, Global solutions to viscous Hamilton-Jacobi equations with irregular initial data, Comm. Partial Differential Equations 24 (1999), 1999-2021. MR 2000g:35091
  • 3. S. Benachour and Ph. Laurençot, Very singular solutions to a nonlinear parabolic equation with absorption. I. Existence, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 27-44. CMP 2001:09
  • 4. S. Benachour, Ph. Laurençot and D. Schmitt, in preparation.
  • 5. S. Benachour, B. Roynette and P. Vallois, Asymptotic estimates of solutions of $u_t - \Delta u = -\vert\nabla u\vert$ in $\mathbb{R}_+\times\mathbb{R}^d$, $d\ge 2$, J. Funct. Anal. 144 (1997), 301-324. MR 97m:35118
  • 6. H. Brézis, Analyse fonctionnelle. Théorie et applications, Masson, Paris, 1983. MR 85a:46001
  • 7. L.C. Evans, Regularity properties for the heat equation subject to nonlinear boundary constraints, Nonlinear Anal. 1 (1977), 593-602. MR 58:29276
  • 8. L.C. Evans and B.F. Knerr, Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities, Illinois J. Math. 23 (1979), 153-166. MR 80d:35082
  • 9. V.A. Galaktionov and J.L. Vazquez, Asymptotic behaviour of nonlinear parabolic equations with critical exponents. A dynamical systems approach, J. Funct. Anal. 100 (1991), 435-462. MR 92k:35128
  • 10. V.A. Galaktionov and J.L. Vazquez, Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997), 1-67. MR 97h:35085
  • 11. B.H. Gilding, M. Guedda and R. Kersner, The Cauchy problem for $u_t = \Delta u + \vert\nabla u\vert^q$, prépublication LAMFA 28, Université de Picardie, 1998.
  • 12. M.A. Herrero and J.J.L. Velázquez, Approaching an extinction point in one-dimensional semilinear heat equations with strong absorption, J. Math. Anal. Appl. 170 (1992), 353-381. MR 93k:35043
  • 13. A.S. Kalashnikov, The propagations of disturbances in problems of non-linear heat conduction with absorption, Comput. Math. Math. Phys. 14 (1974), 70-85.
  • 14. O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr. 23, Amer. Math. Soc., Providence, 1968. MR 39:3159b

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 35B40, 35B05, 35K55

Retrieve articles in all journals with MSC (1991): 35B40, 35B05, 35K55


Additional Information

Said Benachour
Affiliation: Institut Elie Cartan - Nancy, Université de Nancy I, BP 239, F-54506 Vandœuvre les Nancy cedex, France
Email: benachou@iecn.u-nancy.fr

Philippe Laurençot
Affiliation: Institut Elie Cartan - Nancy, Université de Nancy I, BP 239, F-54506 Vandœuvre les Nancy cedex, France
Address at time of publication: Mathématiques pour l’Industrie et la Physique, UNR CNRS 5640, Université Paul Sabatier-Toulouse 3, 118, route de Narbonne, F-31062 Toulouse Cedex 4, France
Email: laurenco@iecn.u-nancy.fr, laurencot@mip.ups-tlse.fr

Didier Schmitt
Affiliation: Institut Elie Cartan - Nancy, Université de Nancy I, BP 239, F-54506 Vandœuvre les Nancy cedex, France
Email: dschmitt@iecn.u-nancy.fr

DOI: https://doi.org/10.1090/S0002-9939-01-06140-8
Keywords: Extinction in finite time, temporal decay estimates, viscous Hamilton-Jacobi equations
Received by editor(s): March 23, 2000
Received by editor(s) in revised form: October 12, 2000
Published electronically: October 1, 2001
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society