ALMOST POSITIVE CURVATURE ON THE GROMOLL-MEYER 7-SPHERE

J.-H. ESCHENBURG

(Communicated by Wolfgang Ziller)

Abstract. D. Gromoll and W. Meyer have represented a certain exotic 7-sphere M as a biquotient of the compact Lie group $Sp(2)$. Thus any invariant normal homogeneous metric on $Sp(2)$ induces a metric of nonnegative sectional curvature on M. We show that the simplest such metrics (except the bi-invariant one) induce metrics which have in fact strictly positive curvature outside a subset of M with measure zero.

There are only very few compact manifolds known which allow metrics of strictly positive sectional curvature. But recently it has been shown ([PW], [Wk]) that much more spaces satisfy a condition which seems to be only slightly weaker: A Riemannian manifold M is said to have almost positive curvature if it has positive curvature on an open subset $M_0 \subset M$ such that $M \setminus M_0$ is a set of measure zero.

D. Gromoll and W. Meyer [GM] constructed a metric of nonnegative sectional curvature on the exotic 7-sphere $M = G/U$ where $G = Sp(2)$ and $U = \{((q_1,q_2), q); \ q \in Sp(1)\} \subset G \times G$.

In fact, a subgroup $U \subset G \times G$ acts on G by left and right multiplication: $(u_1, u_2).g := u_1 gu_2^{-1}$. If this action is free, the orbit space G/U is a smooth manifold, called a biquotient. Any normally homogeneous metric on G has nonnegative curvature, and if this metric is also U-invariant, it induces a metric on the orbit space which has also nonnegative curvature by O'Neill’s formulas for Riemannian submersions. For the bi-invariant metric and many other normal homogeneous metrics on $Sp(2)$, the curvature on $M = Sp(2)/U$ is even strictly positive near the point $U.e$ where $e \in Sp(2)$ is the identity, but this cannot hold on the whole manifold ([E1]). How large is the subset $M_0 \subset M$ where the curvature is strictly positive? It is known ([W]) that for the bi-invariant metric $M \setminus M_0$ contains an open subset, so this metric does not have almost positive curvature in the above sense. However the property does hold for the simplest normally homogeneous metrics on $Sp(2)$ which are not bi-invariant. Using arguments taken from [E1] we will show that $M \setminus M_0$ is essentially a hypersurface. F. Wilhelm [W] has shown almost positivity for another set of metrics on M, but his computations are much more involved.

Let $K = Sp(1) \times Sp(1) \subset Sp(2) = G$. Then G is equivariantly diffeomorphic to the homogeneous space $(G \times K)/K$ where K sits diagonally in $G \times K$. A bi-invariant metric on $G \times K$ thus induces a normally homogeneous metric on G. Note

Received by the editors September 28, 2000 and, in revised form, October 23, 2000.

2000 Mathematics Subject Classification. Primary 53C20, 53C30; Secondary 57S25, 57R60.

Key words and phrases. Biquotients, exotic 7-sphere, quaternions, zero curvature set.
that \(G/K = \mathbb{H}P^1 = S^4 \) is a symmetric space. Such metrics are described in detail in [F2]. They are induced by certain \(Ad(K) \)-invariant inner products on the Lie algebra \(\mathfrak{g} \) and have nonnegative curvature (by O'Neill's formula). Moreover, the 2-planes with curvature zero are those spanned by two orthogonal vectors \(X, Y \in \mathfrak{g} \) with

\[
[X, Y] = [X_t, Y_t] = [X_p, Y_p] = 0
\]

where \(X_t \) and \(X_p \) are the components of \(X \) with respect to the Cartan decomposition \(\mathfrak{g} = \mathfrak{k} + \mathfrak{p} \). Since \(G/K \) is a rank-one symmetric space, there are no vanishing commutators in \(\mathfrak{p} \); thus we may assume that \(Y \) has no \(\mathfrak{p} \)-component, i.e. \(Y = (y z 0 0) \in \mathfrak{k} \) where \(y, z \) are imaginary quaternions. Let \(X_p = (0 -x 0) \) for some nonzero \(x \in \mathbb{H} \). Then \([X_p, Y] = 0 \) iff \(zx = xy \) or

\[
z = xyx^{-1}.
\]

The infinitesimal action of the Lie algebra \(\mathfrak{u} \) of \(U \) on \(G \) is given as follows: For any \(g = (a b c d) \in Sp(2) \) we have \(V_g := g^{-1}(u, g) = \{v_g; v \in \mathbb{R}^3\} \) where \(\mathbb{R}^3 \subset \mathbb{H} \) denotes the set of imaginary quaternions (the Lie algebra of \(Sp(1) \)) and where

\[
v_g = Ad(g^*)(\begin{pmatrix} v & 0 \\ 0 & v \end{pmatrix}) = \begin{pmatrix} \tilde{a}v - v & \tilde{a}v \tilde{b} - v \\ \tilde{b}v a - v & \tilde{b}v b - v \end{pmatrix}.
\]

In order to have zero curvature at the point \(U.g \in G/U \) we need to find perpendicular \(X, Y \perp V_g \) satisfying (1), thus spanning a horizontal zero curvature plane at \(g \), and in fact this condition is also sufficient (cf. [E1], p. 31, and [GM]).

Theorem. Let \(g = (a b c d) \in Sp(2) \) with \(a, b \neq 0 \). There exists a zero curvature plane at \(U.g \in G/U \) iff

\[
det(I - Ad(b^{-1}) - Ad(a^{-1})) = 0.
\]

Proof. Let \(X, Y \perp V_g \) with (1), spanning a zero curvature plane. Our first claim is that \(X_t \) and \(Y_t \) are linearly dependent. In fact, since \([X_t, Y_t] = 0 \), we may assume \(X_t = (\tilde{x} 0 0 0) \) and \(Y_t = (0 y 0 0) \) for \(x, y \in \mathbb{R}^3 \). Thus \(\langle v_g, X \rangle = \langle \tilde{a}v - v, x \rangle = \langle v, ax\tilde{a} - x \rangle \) and likewise \(\langle v_g, Y \rangle = \langle v, by\tilde{b} - y \rangle \). This vanishes for all \(v \in \mathbb{R}^3 \) if \(ax\tilde{a} = x \) and \(by\tilde{b} = y \). If both \(x, y \) are nonzero, we have \(|a|^2 = |b|^2 = 1 \) which is impossible since \(|a|^2 + |b|^2 = 1 \) (recall that \(g \) is unitary).

Thus we may assume \(X_t = 0 \) and hence by (2)

\[
X = \begin{pmatrix} 0 & -\tilde{x} \\ x & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} y & 0 \\ 0 & xyx^{-1} \end{pmatrix}.
\]

Now

\[
\langle v_g, X \rangle = 2\langle \tilde{b}v a, x \rangle = 2\langle v, bx\tilde{a} \rangle,
\]

and this vanishes if \(bx\tilde{a} \) is perpendicular to \(\mathbb{R}^3 \subset \mathbb{H} \), hence a real number. Thus if \(a \neq 0 \), we get

\[
bx = ta
\]

for some nonzero \(t \in \mathbb{R} \). Moreover, \(\langle v_g, Y \rangle = \langle v, ay\tilde{a} - y + bx y x^{-1}\tilde{b} - xyx^{-1} \rangle \) vanishes for all \(v \in \mathbb{R}^3 \) iff

\[
ay\tilde{a} - y + bx y x^{-1}\tilde{b} - xyx^{-1} = 0.
\]
By (5) we have \(bxy - \bar{b} = |b|^2 bxy(bx)^{-1} = |b|^2 aya^{-1} \) if also \(b \neq 0 \). Hence
\[
ay + bxy - \bar{b} = |a|^2 aya^{-1} + |b|^2 aya^{-1} = aya^{-1} = Ad(a)y.
\]
Further (5) implies \(Ad(x) = Ad(b^{-1}a) \). Therefore \(\langle v_g, Y \rangle = 0 \) iff
\[
Ad(a)y - Ad(b^{-1})Ad(a)y - y = 0.
\]
Thus \(Ad(a)y \neq 0 \) is in the kernel of \(I - Ad(b^{-1}) - Ad(a^{-1}) \) which implies that the determinant of that matrix vanishes.

Vice versa, if \(\det(I - Ad(b^{-1}) - Ad(a^{-1})) = 0 \), we find a nonzero \(y \in \mathbb{R}^3 \) such that \(Ad(a)y \) is in the kernel of this matrix. Now putting \(x = b^{-1}a \) and defining \(X, Y \) by (4), we obtain a horizontal zero curvature plane at \(g \).

Remarks. 1. We can determine the horizontal zero curvature planes also in the cases \(a = 0 \) or \(b = 0 \), using (6). E.g. if \(b = 0 \), then (6) becomes \(aya^{-1} - y - xyy^{-1} = 0 \) which is solvable precisely for those \(a \) such that \(Ad(a) \) turns some vector \(y \in \mathbb{R}^3 \) by the angle \(\pi/3 \); then \(|Ad(a)y - y| = |y| \), and we find some \(x \in \mathbb{H} \) with \(Ad(x)y = Ad(a)y - y \). Thus a horizontal zero curvature plane at such \(g \) exists if and only if the (minimal) rotation angle of \(Ad(a) \) is \(\geq \pi/3 \).

2. Note that equation (*) for \(g \) in the Theorem is invariant under the action of \(U \) and thus determines a hypersurface (possibly with singularities) in \(G/U \). In fact, if \(u = (q_1, q) \in U \), then
\[
u.g = \left(\begin{array}{cc} qaq^{-1} & qbq^{-1} \\ cq^{-1} & dq^{-1} \end{array} \right).
\]
Thus \(a \) and \(b \) become conjugated by \(q \) which does not change the determinant equation.

References

[W] F. Wilhelm: An exotic sphere with positive curvature almost everywhere, Preprint Riverside 1999

[Wk] B. Wilking: Manifolds with positive sectional curvature almost everywhere, preprint

Institut für Mathematik, Universität Augsburg, D-86135 Augsburg, Germany
E-mail address: eschenburg@math.uni-augsburg.de