Real analytic solutions of parabolic equations with time-measurable coefficients

Author:
Jay Kovats

Journal:
Proc. Amer. Math. Soc. **130** (2002), 1055-1064

MSC (1991):
Primary 35B65, 35K10

DOI:
https://doi.org/10.1090/S0002-9939-01-06163-9

Published electronically:
September 14, 2001

MathSciNet review:
1873779

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use Bernstein's technique to show that for any fixed , strong solutions of the uniformly parabolic equation in are real analytic in . Here, is a bounded domain and the coefficients are measurable. We also use Bernstein's technique to obtain interior estimates for pure second derivatives of solutions of the fully nonlinear, uniformly parabolic, concave equation in , where is measurable in .

**[B]**S.N. Bernstein,*The Boundedness on the Moduli of a Sequence of Derivatives of Solutions of Equations of Parabolic Type*, vol. 18, Dokl. Acad. Nauk SSSR, 1938, pp. 385-388 (Russian).**[Br]**A. Brandt,*Interior Schauder Estimates for Parabolic Differential (or Difference) Equations via the Maximum Principle*, vol. 7, Israel J. Math., 1969, pp. 254-262. MR**40:3044****[C]**S. Campanato,*Proprietà di una Famiglia di Spazi Functionali*, Ann. Scuola Norm. Sup. Pisa (3)**18**(1964), 137-160.**[CC]**L. Caffarelli and X. Cabre,*Fully Nonlinear Elliptic Equations*, Amer. Math. Soc., Providence, R.I., 1995. MR**96h:35046****[E]**L.C. Evans,*Partial Differential Equations*, Amer. Math. Soc., Providence, R.I., 1998. MR**99e:35001****[G]**M. Giaquinta,*Introduction to Regularity Theory for Nonlinear Elliptic Systems*, Birkhäuser Verlag, Basel, 1993. MR**94g:49002****[GT]**D. Gilbarg and N. Trudinger,*Elliptic Partial Differential Equations of Second Order, 2nd ed.*, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983. MR**86c:35035****[K]**J. Kovats,*Fully Nonlinear Elliptic Equations and the Dini Condition*, Communications in PDE**22 (11-12)**(1997), 1911-1927. MR**99h:35048****[K1]**N.V. Krylov,*Nonlinear Elliptic and Parabolic Equations of the Second Order Equations*, Nauka, Moscow, 1987, English transl. Reidel, Dordrecht. MR**88d:35005****[K2]**-,*Lectures on Elliptic and Parabolic Equations in Hölder Spaces*, Amer. Math. Soc., Providence, R.I., 1996. MR**97i:35001****[K3]**-,*Boundedly Nonhomogeneous Elliptic and Parabolic Equations*, vol. 20, Izv. Acad. Nauk., 1983, pp. 459-492, English transl. in Math. USSR Izv.**[KS]**N.V. Krylov and M.V. Safonov,*Certain Properties of Solutions of Parabolic Equations with Measurable Coefficients*, vol. 16, Izv. Acad. Nauk., 1981, pp. 155-164, English transl. in Math. USSR Izv.**[La]**E.M. Landis,*Second Order Equations of Elliptic and Parabolic Type*, vol. 171, Amer. Math. Soc., Providence, R.I., 1998, English transl. in Translations of Math. Monographs. MR**98k:35034****[L]**G.M. Lieberman,*Intermediate Schauder Theory for Second Order Parabolic Equations IV. Time Irregularity and Regularity*, Differential and Integral Equations**5**(1992), 1219-1236. MR**93i:35068****[LSU]**O.A. Ladyzhenskaya, V.A. Solonnikov, N.N Ural'tzeva,*Linear and Quasilinear Equations of Parabolic Type*, vol. 23, Amer. Math. Soc., Providence, R.I., 1968, English transl. in Translations of Math. Monographs.**[M]**V.P. Mikhailov,*Partial Differential Equations*, Mir, Moscow, 1978. MR**82a:35003a****[W]**Wang L.,*On the Regularity Theory of Fully Nonlinear Parabolic Equations: II*, Comm. on Pure and Applied Math.**45**(1992), 141-178. MR**92m:35127**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
35B65,
35K10

Retrieve articles in all journals with MSC (1991): 35B65, 35K10

Additional Information

**Jay Kovats**

Affiliation:
Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, Florida 32901

Email:
jkovats@zach.fit.edu

DOI:
https://doi.org/10.1090/S0002-9939-01-06163-9

Received by editor(s):
October 4, 2000

Published electronically:
September 14, 2001

Communicated by:
David S. Tartakoff

Article copyright:
© Copyright 2001
American Mathematical Society