Exactness of one relator groups

Author:
Erik Guentner

Journal:
Proc. Amer. Math. Soc. **130** (2002), 1087-1093

MSC (1991):
Primary 47L85; Secondary 20E06, 22D15

Published electronically:
October 12, 2001

MathSciNet review:
1873783

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A discrete group is -exact if the reduced crossed product with converts a short exact sequence of --algebras into a short exact sequence of -algebras. A one relator group is a discrete group admitting a presentation where is a countable set and is a single word over . In this short paper we prove that all one relator discrete groups are -exact. Using the Bass-Serre theory we also prove that a countable discrete group acting without inversion on a tree is -exact if the vertex stabilizers of the action are -exact.

**[Ada94]**S. Adams,*Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups*, Topology**33**(1994), no. 4, 765–783. MR**1293309**, 10.1016/0040-9383(94)90007-8**[ADR98]**C. Anantharaman-Delaroche and J. Renault,*Amenable groupoids*, Monographies de L'Enseignement Math. 36, Geneva, 2000. CMP**2001:05****[Bau93]**Gilbert Baumslag,*Topics in combinatorial group theory*, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993. MR**1243634****[BBV99]**Cédric Béguin, Hela Bettaieb, and Alain Valette,*𝐾-theory for 𝐶*-algebras of one-relator groups*, 𝐾-Theory**16**(1999), no. 3, 277–298. MR**1681180**, 10.1023/A:1007755408585**[CCJ+98]**P. Cherix, M. Cowling, P. Jollissaint, P. Julg, and A. Valette,*Locally compact groups with the Haagerup property*, Unpublished manuscript, 1998.**[CM90]**Alain Connes and Henri Moscovici,*Cyclic cohomology, the Novikov conjecture and hyperbolic groups*, Topology**29**(1990), no. 3, 345–388. MR**1066176**, 10.1016/0040-9383(90)90003-3**[Dyk99]**K. Dykema,*Exactness of reduced amalgamated free product -algebras*, Preprint, 1999.**[Ger98]**E. Germain,*Approximate invariant means for boundary actions of hyperbolic groups*, Appendix to*Amenable Groupoids*[ADR98], 1998. CMP**2001:05****[GK99]**E. Guentner and J. Kaminker,*Exactness and the Novikov conjecture*, To appear in Topology, 1999.**[GK00]**E. Guentner and J. Kaminker,*Addendum to ``Exactness and the Novikov conjecture''*, To appear in Topology, 2000.**[Gro99]**M. Gromov,*Spaces and questions*, Unpublished manuscript, 1999.**[HK97]**Nigel Higson and Gennadi Kasparov,*Operator 𝐾-theory for groups which act properly and isometrically on Hilbert space*, Electron. Res. Announc. Amer. Math. Soc.**3**(1997), 131–142 (electronic). MR**1487204**, 10.1090/S1079-6762-97-00038-3**[HK00]**N. Higson and G. G. Kasparov,*-theory and -theory for groups which act properly and isometrically on Hilbert space*, To appear in Invent. Math., 2000.**[Kas88]**G. G. Kasparov,*Equivariant 𝐾𝐾-theory and the Novikov conjecture*, Invent. Math.**91**(1988), no. 1, 147–201. MR**918241**, 10.1007/BF01404917**[KW95]**Eberhard Kirchberg and Simon Wassermann,*Operations on continuous bundles of 𝐶*-algebras*, Math. Ann.**303**(1995), no. 4, 677–697. MR**1359955**, 10.1007/BF01461011**[KW99]**E. Kirchberg and S. Wassermann,*Permanence properties of -exact groups*, Documenta Mathematica**4**(1999), 513-558. CMP**2000:05****[Lan73]**L. Lance,*On nuclear -algebras*, J. Funct. Anal.**12**(1973), 157-176.**[MS73]**James McCool and Paul E. Schupp,*On one relator groups and 𝐻𝑁𝑁 extensions*, J. Austral. Math. Soc.**16**(1973), 249–256. Collection of articles dedicated to the memory of Hanna Neumann, II. MR**0338186****[Oza00]**N. Ozawa,*Amenable actions and exactness for discrete groups*, C. R. Acad. Sci. Paris Ser. I Math. 330 (2000), No. 8, 691-695. CMP**2000:14****[Ser80]**Jean-Pierre Serre,*Trees*, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR**607504**

Jean-Pierre Serre,*Arbres, amalgames, 𝑆𝐿₂*, Société Mathématique de France, Paris, 1977 (French). Avec un sommaire anglais; Rédigé avec la collaboration de Hyman Bass; Astérisque, No. 46. MR**0476875****[SS97]**A. M. Sinclair and R. R. Smith,*The completely bounded approximation property for discrete crossed products*, Indiana Univ. Math. J.**46**(1997), no. 4, 1311–1322. MR**1631596**, 10.1512/iumj.1997.46.1428**[Tu00]**J. L. Tu,*Remarks On Yu's Property A for discrete metric spaces and groups*, Preprint, 2000.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47L85,
20E06,
22D15

Retrieve articles in all journals with MSC (1991): 47L85, 20E06, 22D15

Additional Information

**Erik Guentner**

Affiliation:
Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., Indianapolis, Indiana 46202-3216

Address at time of publication:
Mathematical Sciences Research Institute, 100 Centennial Drive, #5070, Berkeley, California 94702-5070

Email:
guentner@msri.org

DOI:
https://doi.org/10.1090/S0002-9939-01-06195-0

Keywords:
Group $C^*$-algebra,
$C^*$-exactness

Received by editor(s):
October 9, 2000

Published electronically:
October 12, 2001

Additional Notes:
The author was supported with funds from the NSF

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2001
American Mathematical Society