AN EXPRESSION OF SPECTRAL RADIUS
VIA ALUTHGE TRANSFORMATION

TAKEAKI YAMAZAKI

(Communicated by Joseph A. Ball)

Abstract. For an operator \(T \in B(H) \), the Aluthge transformation of \(T \) is defined by \(\tilde{T} = |T|^\frac{1}{2} U |T|^\frac{1}{2} \). And also for a natural number \(n \), the \(n \)-th Aluthge transformation of \(T \) is defined by \(\tilde{T}_n = (\tilde{T}_{n-1}) \) and \(\tilde{T}_1 = \tilde{T} \). In this paper, we shall show
\[
\lim_{n \to \infty} ||\tilde{T}_n|| = r(T),
\]
where \(r(T) \) is the spectral radius.

1. Introduction

As a characterization of the spectral radius, it is well known that \(\lim_{n \to \infty} ||T^n||^{\frac{1}{n}} = r(T) \). This result is very famous and quite useful. On the other hand, Aluthge [1] defined a transformation \(\tilde{T} \) of \(T \) by \(\tilde{T} = |T|^\frac{1}{2} U |T|^\frac{1}{2} \), where \(T = U |T| \) is the polar decomposition of \(T \). \(\tilde{T} \) is called the Aluthge transformation of \(T \). Many researchers have obtained their results by using Aluthge transformation, for example, [1], [2], [3], [4], [6], [7], [8]. It is easily obtained that \(||T|| \geq ||\tilde{T}|| \geq r(T) = r(T) \).

Recently [9], as a generalization of Aluthge transformation, for each natural number \(n \), we defined a transformation \(\tilde{T}_n \) of \(T \) by
\[
\tilde{T}_n = (\tilde{T}_{n-1}) \quad \text{and} \quad \tilde{T}_1 = \tilde{T}.
\]
We call \(\tilde{T}_n \) the \(n \)-th Aluthge transformation of \(T \).

In this paper, we shall show another characterization of the spectral radius by using \(n \)-th Aluthge transformation as follows:

Theorem 1. Let \(T \in B(H) \). Then \(\lim_{n \to \infty} ||\tilde{T}_n|| = r(T) \).

2. Proof

In what follows, a capital letter means a bounded linear operator on a complex Hilbert space \(H \). An operator \(T \) is said to be positive (denoted by \(T \geq 0 \)) if \((Tx,x) \geq 0 \) for all \(x \in H \). To prove Theorem 1 we prepare the following results.

Received by the editors October 27, 2000.
2000 Mathematics Subject Classification. Primary 47A13, 47A30.
Key words and phrases. Aluthge transformation, Heinz inequality, spectral radius.

©2001 American Mathematical Society
Theorem A \((\star)\). Let \(A\) and \(B\) be positive operators, and \(X \in B(H)\). Then
\[
\|A^{\alpha}XB^{\alpha}\| \leq \|AXB\|^{\alpha}\|X\|^{1-\alpha}
\]
holds for all \(\alpha \in [0,1]\).

Lemma 2. For a natural number \(n\) and \(k = 0, 1, \ldots, n+1\), let
\[
(2.1)\quad nD_k = \frac{n!(n-2k+1)}{k!(n-k+1)!}
\]
Then the following assertions hold:

(i) \(nD_0 = 1\) for all natural numbers \(n\).

(ii) \(nD_k + nD_{k+1} = n+1D_{k+1}\) for all natural numbers \(n\) and \(k = 0, 1, \ldots, n\).

(iii) \(2n+1D_n = 2n+2D_{n+1}\) for all natural numbers \(n\).

(iv) \(\sum_{k=0}^\left\lfloor \frac{n}{2} \right\rfloor (n-2k+1) nD_k = 2^n\),
where \(\left\lfloor \frac{n}{2} \right\rfloor\) is the largest integer satisfying \(\frac{n}{2} \leq \frac{n}{2}\).

(v) \(\lim_{n \to \infty} \frac{(n-2k+1)nD_k}{2^n} = 0\) for all positive integers \(k\).

Proof. (i). By \((2.1)\), we have
\[
nD_0 = \frac{n!(n+1)}{0!(n+1)!} = 1.
\]

(ii). By \((2.1)\), we obtain
\[
nD_k + nD_{k+1} = \frac{n!(n-2k+1)}{k!(n-k+1)!} + \frac{n!(n-2k-1)}{(k+1)!(n-k)!}
= \frac{n!(n+1)(n-2k+1) + (n-k+1)(n-2k-1)}{(k+1)!(n-k+1)!}
= \frac{n!(n+1)(n-2k)}{(k+1)!(n-k+1)!}
= \frac{(n+1)(n-2k)}{(k+1)!(n-k+1)!} = n+1D_{k+1}.
\]

(iii). By (ii) and \(2n+1D_{n+1} = 0\), we have
\[
2n+2D_{n+1} = 2n+1D_n + 2n+1D_{n+1} = 2n+1D_n.
\]

(iv). We shall prove (iv) by induction on \(n\).

(a) The case \(n = 1\). By \((2.1)\), we obtain
\[
\sum_{k=0}^{\left\lfloor \frac{1}{2} \right\rfloor} (1-2k+1)D_k = 2_1D_0 = 2.
\]

(b) Assume that
\[
(2.2)\quad \sum_{k=0}^{\left\lfloor \frac{n-2}{2} \right\rfloor} (n-2k)nD_k = 2^{n-1}.
\]
(c-1) The case \(n = 2m + 1 \) for \(m = 1, 2, \cdots \). Then \(\left[\frac{n}{2} \right] = \left[\frac{2m+1}{2} \right] = m \). Hence we obtain

\[
\sum_{k=0}^{m} (n - 2k + 1) n D_k \\
= (n + 1) n D_0 + \sum_{k=1}^{m} (n - 2k + 1) n D_k \\
= (n + 1) n D_0 + \sum_{k=1}^{m} (n - 2k + 1)(n D_{k-1} + n D_k) \text{ by (i) and (ii)} \\
= (n + 1) n D_0 + \sum_{k=1}^{m} (n - 2k + 1)n D_{k-1} + \sum_{k=1}^{m} (n - 2k + 1)n D_k \\
= \sum_{k=0}^{m-1} (n - 2k - 1) n D_k + \sum_{k=1}^{m} (n - 2k + 1)n D_{k-1} + \sum_{k=1}^{m} (n - 2k + 1)n D_k \\
= 2 \sum_{k=0}^{m-1} (n - 2k) n D_k + (n - 2m + 1)n D_{m} \text{ by } n = 2m + 1 \\
= 2 \sum_{k=0}^{m-1} (n - 2k) n D_k + 2 n D_{m} \\
= 2 \sum_{k=0}^{m} (n - 2k) n D_k = 2 \cdot 2^{n-1} = 2^n \text{ by (2.2)}. \\
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

(c-2) The case \(n = 2m + 2 \) for \(m = 0, 1, 2, \cdots \). Then \(\left[\frac{n}{2} \right] = m + 1 \) and \(\left[\frac{n-1}{2} \right] = m \). Hence we obtain

\[
\sum_{k=0}^{m+1} (n - 2k + 1) n D_k \\
= (n + 1) n D_0 + \sum_{k=1}^{m+1} (n - 2k + 1) n D_k \\
= (n + 1) n D_0 + \sum_{k=1}^{m+1} (n - 2k + 1)(n D_{k-1} + n D_k) \text{ by (i) and (ii)} \\
= (n + 1) n D_0 + \sum_{k=1}^{m+1} (n - 2k + 1)n D_{k-1} + \sum_{k=1}^{m+1} (n - 2k + 1)n D_k \\
= \sum_{k=0}^{m} (n - 2k - 1) n D_k + \sum_{k=0}^{m+1} (n - 2k + 1)n D_{k} \\
= 2 \sum_{k=0}^{m} (n - 2k) n D_k + (n - 2(m + 1) + 1)n D_{m+1} \\
= 2 \cdot 2^{n-1} = 2^n \text{ by (2.2) and } n-1 D_{m+1} = 2m+1 D_{m+1} = 0. \\
\]
(v). We remark that
\[
\lim_{n \to \infty} \frac{n^{\alpha}}{2^n} = 0 \quad \text{holds for fixed } \alpha \geq 0.
\]

(a) The case \(k = 0\). We have
\[
\lim_{n \to \infty} \frac{(n + 1)_n D_0}{2^n} = 2 \lim_{n \to \infty} \frac{(n + 1)}{2^{n+1}} = 0 \quad \text{by (2.3)}.
\]

(b) The case \(k = 1\). We have
\[
\lim_{n \to \infty} \frac{(n - 1)_n D_1}{2^n} = \frac{1}{2} \lim_{n \to \infty} \frac{(n - 1)^2}{2^{n-1}} = 0 \quad \text{by (2.3)}.
\]

(c) The case \(k \geq 2\). For sufficiently large \(n\),
\[
0 \leq \frac{(n - 2k + 1)_n D_k}{2^n} = \frac{n!(n - 2k + 1)^2}{2^nk!(n - k + 1)!} \\
= \frac{n(n - 1) \cdots (n - k + 2)(n - 2k + 1)^2}{2^nk!} \\
= \frac{n^{k+1} \cdot (1 - \frac{1}{n}) \cdots (1 - \frac{k-2}{n})(1 - \frac{2k-1}{n})^2}{2^nk!} \leq \frac{n^{k+1}}{2^n}.
\]

Hence we obtain (v) by (2.3).

Lemma 3. Let \(T \in B(H)\). Then
\[
\|T^n\| \leq \|T^{n+1}\|^{\frac{1}{2}} \|T^{n-1}\|^{\frac{1}{2}}
\]
holds for all natural numbers \(n\).

Proof. Let \(T = U|T|\) be the polar decomposition of \(T\). Then we have
\[
\|\widetilde{T^n}\| = \|(T^n)^{\frac{1}{2}} U|T|^{\frac{1}{2}}\| = \|T^{\frac{1}{2}} (U|T|)^{n-1} U|T|^{\frac{1}{2}}\| \\
\leq \|T^{\frac{1}{2}} (U|T|)^{n-1} U|T|^{\frac{1}{2}}\| \|U|T|\|^{n-1} U\|^{\frac{1}{2}} \quad \text{by Theorem A} \\
= \|T^{n+1}\|^{\frac{1}{2}} \|T^n\|^{\frac{1}{2}} \|T^{n-1}\|^{\frac{1}{2}}.
\]

Lemma 4. Let \(T \in B(H)\) and \(m = \lfloor \frac{n}{2} \rfloor\). Then
\[
\|\widetilde{T^n}\| \leq \|T^{n+1}\|^{\frac{1}{2}} \|T^{n-1}\|^{\frac{1}{2}} \|T^{n-2}\|^{\frac{1}{2}} \cdots \|T^m\|^{\frac{1}{2}},
\]
where \(m = \lfloor \frac{n-1}{2} \rfloor\).

Proof. We shall prove Lemma 4 by induction on \(n\).
(a) \(\|\widetilde{T^n}\| \leq \|T^2\|^{\frac{1}{2}}\) holds by Lemma 3.
(b) Assume that
\[
\|\widetilde{T_{n-1}}\| \leq \|T^n\|^{\frac{1}{2}} \|T^{n-2}\|^{\frac{1}{2}} \cdots \|T^{n-2k}\|^{\frac{1}{2}} \cdots \|T^{n-2m}\|^{\frac{1}{2}},
\]
where \(m = \lfloor \frac{n-1}{2} \rfloor\).
(c-1) The case \(n = 2m + 1\) for \(m = 1, 2, \ldots\). Then \(\frac{m-1}{2} = m\). Hence by (2.3), we have

\[
\|\hat{T}_n\| = \|\hat{(T)}_{n-1}\|
\]

\[
\leq \|\hat{T}_n\| \frac{D_{n-1}}{2^{n-1}} \|\hat{T}_n-1\| \frac{D_{n-2}}{2^{n-2}} \ldots \|\hat{T}_3\| \frac{D_{n-3}}{2^{n-3}} \|\hat{T}_2\| \frac{D_{n-4}}{2^{n-4}} \|\hat{T}_1\| \frac{D_{n-5}}{2^{n-5}} \ldots \|\hat{T}_1\| \frac{D_{n-2m-1}}{2^{n-2m-1}}
\]

\[
\leq \left(\|\hat{T}_n^{m+1}\| \|\hat{T}_n^{m-1}\| \|\hat{T}_n^{m-2}\| \ldots \|\hat{T}_n^{m-3}\| \right)^{\frac{1}{2m+1}} \left(\|\hat{T}_n^{m}\| \|\hat{T}_n^{m-1}\| \|\hat{T}_n^{m-2}\| \ldots \|\hat{T}_n^{m-3}\| \right)^{\frac{1}{2m+1}} \ldots \left(\|\hat{T}_n^1\| \|\hat{T}_n^{m}\| \|\hat{T}_n^{m-1}\| \|\hat{T}_n^{m-2}\| \ldots \|\hat{T}_n^{m-3}\| \right)^{\frac{1}{2m+1}}
\]

\[
= \|\hat{T}_n^{m+1}\| \|\hat{T}_n^{m-1}\| \|\hat{T}_n^{m-2}\| \ldots \|\hat{T}_n^{m-3}\| \|\hat{T}_n^1\| \|\hat{T}_n^{m}\| \|\hat{T}_n^{m-1}\| \|\hat{T}_n^{m-2}\| \ldots \|\hat{T}_n^{m-3}\| \|\hat{T}_n^1\|
\]

by (i) and (ii) of Lemma 2 and the last inequality holds by Lemma 3.

(c-2) The case \(n = 2m + 2\) for \(m = 0, 1, 2, \ldots\). Then \(\frac{m+1}{2} = m + 1\) and \(\frac{m-1}{2} = m\). Hence by (2.4), we have

\[
\|\hat{T}_n\| = \|\hat{(T)}_{n-1}\|
\]

\[
\leq \|\hat{T}_n\| \frac{D_{n-1}}{2^{n-1}} \|\hat{T}_n-1\| \frac{D_{n-2}}{2^{n-2}} \ldots \|\hat{T}_3\| \frac{D_{n-3}}{2^{n-3}} \|\hat{T}_2\| \frac{D_{n-4}}{2^{n-4}} \|\hat{T}_1\| \frac{D_{n-5}}{2^{n-5}} \ldots \|\hat{T}_1\| \frac{D_{n-2m-1}}{2^{n-2m-1}}
\]

\[
\leq \left(\|\hat{T}_n^{m+1}\| \|\hat{T}_n^{m-1}\| \|\hat{T}_n^{m-2}\| \ldots \|\hat{T}_n^{m-3}\| \right)^{\frac{1}{2m+1}} \left(\|\hat{T}_n^{m}\| \|\hat{T}_n^{m-1}\| \|\hat{T}_n^{m-2}\| \ldots \|\hat{T}_n^{m-3}\| \right)^{\frac{1}{2m+1}} \ldots \left(\|\hat{T}_n^1\| \|\hat{T}_n^{m}\| \|\hat{T}_n^{m-1}\| \|\hat{T}_n^{m-2}\| \ldots \|\hat{T}_n^{m-3}\| \right)^{\frac{1}{2m+1}}
\]

\[
= \|\hat{T}_n^{m+1}\| \|\hat{T}_n^{m-1}\| \|\hat{T}_n^{m-2}\| \ldots \|\hat{T}_n^{m-3}\| \|\hat{T}_n^1\| \|\hat{T}_n^{m}\| \|\hat{T}_n^{m-1}\| \|\hat{T}_n^{m-2}\| \ldots \|\hat{T}_n^{m-3}\| \|\hat{T}_n^1\|
\]

by (i), (ii) and (iii) of Lemma 2 and the last inequality holds by Lemma 3.
Lemma 5. Let \(\{a_n\}_{n=1}^{\infty} \) be a sequence satisfying \(\lim_{n \to \infty} a_n = a \), and for each natural number \(n \), let \(\{\alpha_{n,k}\}_{k=1}^{n} \) be a positive sequence satisfying
\[
\alpha_{n,1} + \cdots + \alpha_{n,k} + \cdots + \alpha_{n,n} = 1 \quad \text{for all natural numbers } n \quad \text{and } \lim_{n \to \infty} \alpha_{n,k} = 0 \quad \text{for fixed } k = 1, 2, \ldots.
\]
Then
\[
\lim_{n \to \infty} \left(\alpha_{n,1}a_1 + \cdots + \alpha_{n,k}a_k + \cdots + \alpha_{n,n}a_n \right) = a.
\]

Proof. For any \(\varepsilon > 0 \), there exists \(k > 0 \) such that \(|a_n - a| < \varepsilon \) and \(\alpha_{n,1}|a_1 - a| + \cdots + \alpha_{n,k}|a_k - a| < \varepsilon \) for all natural numbers \(n > k \) by the assumptions \(\lim_{n \to \infty} a_n = a \) and \(\lim_{n \to \infty} \alpha_{n,k} = 0 \). Then we have
\[
\left| \left(\alpha_{n,1}a_1 + \cdots + \alpha_{n,k}a_k + \cdots + \alpha_{n,n}a_n \right) - a \right| = \left(\alpha_{n,1}(a_1 - a) + \cdots + \alpha_{n,k}(a_k - a) \right. \\
+ \left. \alpha_{n,k+1}(a_{k+1} - a) + \cdots + \alpha_{n,n}(a_n - a) \right) \leq \alpha_{n,1}|a_1 - a| + \cdots + \alpha_{n,k}|a_k - a| \\
+ \alpha_{n,k+1}|a_{k+1} - a| + \cdots + \alpha_{n,n}|a_n - a| < \varepsilon
\]
by \((2.5) \) and \(\varepsilon \).

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, YOKOHAMA 221-8686, JAPAN

E-mail address: yamazt26@kanagawa-u.ac.jp