Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Regularity of viscosity solutions of a degenerate parabolic equation


Authors: Yun-Guang Lu and Liwen Qian
Journal: Proc. Amer. Math. Soc. 130 (2002), 999-1004
MSC (2000): Primary 35K55; Secondary 35K65, 35D10
DOI: https://doi.org/10.1090/S0002-9939-01-06313-4
Published electronically: November 9, 2001
MathSciNet review: 1873772
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Cauchy problem for the nonlinear degenerate parabolic equation of second order

\begin{displaymath}\left\{ \begin{array}{l} u_t=u\triangle u-\gamma\vert\nabla u... ...0)=u_{0}(x) \text{in} \hspace{0.3cm} R^{N}, \end{array}\right. \end{displaymath}

and present regularity results for the viscosity solutions.


References [Enhancements On Off] (What's this?)

  • [1] M. Ughi, A Degenerate Parabolic Equation Modelling the Spread of an Epidemic, Ann. Mat. Pura Appl. 143 (1986), 385-400. MR 88g:35105
  • [2] M. Bertsch, R.D. Passo, and M. Ughi, Discontinuous ``viscosity" Solution of A Degenerate Parabolic Equation, Transactions of The American Mathematical Society 320 (1990), 2, 779-798. MR 90m:35086
  • [3] M. Bertsch and M. Ughi, Positivity properties of viscosity solutions of a degenerate parabolic equation, Nonlinear Anal. TMA. 14 (1990), 7, 571-592. MR 92a:35006
  • [4] A. Friedman, Partial Differential Equations of Parabolic Type, Englewood Cliffs, N.J., Prentice-Hall Inc., 1964. MR 31:6062
  • [5] Yunguang Lu, Hölder Estimates of Solutions of Biological Population Equations, Applied Mathematical Letters 13 (2000), 123-126. MR 2001b:35182
  • [6] Yunguang Lu, Hölder estimates of solutions to some doubly nonlinear degenerate parabolic equations, Commun. PDE. 24(5, 6) (1999), 895-913. MR 2000c:35105
  • [7] Liwen Qian and Wentao Fan, Hölder estimates of Solutions for Some Degenerate Parabolic Equations, Acta Math. Sci. 4 (1999). MR 2000j:35156
  • [8] P.Z. Mkrtychyan, A degenerate quasilinear parabolic equation that arises in the theory of nonstationary filtration, Izv. Akad. Nauk Armyan. SSSR Mat 24 (1989), 103-116 (English transl. in Soviet J. Contemp. Math. 24 (1989), 1-13). MR 90i:35134
  • [9] P.Z. Mkrtychyan, Estimation of the gradient of a solution and the classical solvability of the first initial-boundary value problem for a class of quasilinear nonuniformly parabolic equations, Izv. Akad. Nauk Armyan. SSSR Mat 24 (1989), 293-299 (English transl. in Soviet J. Contemp. Math. 24 (1989), 85-89). MR 90k:35141
  • [10] B. H. Gilding, Hölder continuity of solutions of parabolic equations, J. London Math. Soc. 13 (1976), 103-106. MR 53:3501

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35K55, 35K65, 35D10

Retrieve articles in all journals with MSC (2000): 35K55, 35K65, 35D10


Additional Information

Yun-Guang Lu
Affiliation: Departamento de Matematicas y Estadistica, Universidad Nacional de Colombia, Bogota, Colombia
Email: yglu@matematicas.unal.edu.co

Liwen Qian
Affiliation: Department of Computational Science, National University of Singapore, Singapore 117543
Address at time of publication: Singapore-MIT Alliance, National University of Singapore, Singapore 119260
Email: qianlw@cz3.nus.edu.sg, smaqlw@nus.edu.sg

DOI: https://doi.org/10.1090/S0002-9939-01-06313-4
Keywords: Degenerate parabolic equation, viscosity solution, Lipschitz continuity, maximum principle
Received by editor(s): November 1, 1998
Received by editor(s) in revised form: April 10, 2000
Published electronically: November 9, 2001
Communicated by: Suncica Canic
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society