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Abstract. We give a very general isoperimetric comparison theorem which,
as an important special case, gives hypotheses under which the spherically sym-
metric (n− 1)-spheres of a spherically symmetric n-manifold are isoperimetric
hypersurfaces, meaning that they minimize (n − 1)-dimensional area among
hypersurfaces enclosing the same n-volume. This result greatly generalizes the
result of Bray (Ph.D. thesis, 1997), which proved that the spherically symmet-
ric 2-spheres of 3-dimensional Schwarzschild space (which is defined to be a
totally geodesic, space-like slice of the usual (3+ 1)-dimensional Schwarzschild
metric) are isoperimetric. We also note that this Schwarzschild result has
applications to the Penrose inequality in general relativity, as described by
Bray.

1. Introduction

In [B1], isoperimetric surfaces were used to prove the Penrose inequality ([Pen],
[HI], [B2]), an inequality concerning the mass of black holes in general relativity, in
certain special cases. In particular, the approach needed the fact that the spheri-
cally symmetric spheres of 3-dimensional Schwarzschild space (Figure 1) minimize
perimeter for a given volume. In this paper, we greatly generalize the techniques
used in [B1] from the Schwarzschild case to twisted products of R with a compact
Riemannian manifold Σ. The important special case that Σ is a round n-sphere
yields results about the isoperimetric hypersurfaces of spherically symmetric man-
ifolds.

Theorem 2.1 provides a very general comparison theorem yielding new examples
from old examples of isoperimetric surfaces in manifolds. Corollary 2.3 deduces
complete families of isoperimetric surfaces. Corollaries 2.4 and 2.5 specialize to sur-
faces of revolution. Finally Corollary 2.6 recovers Bray’s theorem on Schwarzschild
space.

The (3-dimensional) Schwarzschild metric is a good example to consider to mo-
tivate the isoperimetric theorems of this paper. Geometrically, the Schwarzschild
metric is spherically symmetric and has zero scalar curvature. Physically, this met-
ric corresponds to a totally geodesic, space-like slice of the usual (3+1)-dimensional
Schwarzschild space (which we note represents a single, spherically symmetric black
hole in vacuum). Conveniently, the 3-dimensional Schwarzschild metric is isometric
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to the spherically symmetric graph {w2 = 8m|(x, y, z)| − 16m2} ⊂ R4 (as pictured
in Figure 1) and is also isometric to R3 − {0} with metric (1 +m/2|(x, y, z)|)4δij .

Figure 1. In Schwarzschild space, spheres of revolution are
isoperimetric [B1, Fig. 1.1].

In Figure 1, it is clear that there is an area-minimizing sphere at the “neck” of the
Schwarzschild manifold. However, it is a more difficult task to show that the other
spherically symmetric spheres minimize area among homologous surfaces enclosing
the same volume. This result follows as Corollary 2.6 to our main Theorem 2.1.

Except for some recent work on two-dimensional manifolds (see the survey
[HHM]), there are very few manifolds for which the isoperimetric surfaces are
known. There are some results on R × Hn by Hsiang and Hsiang [HH], on
RP 3,S1 × R2, and T2 × R by Ritoré and Ros [RR2], [RR1], [R1], on R × Sn

by Pedrosa [P], on S1 × Rn,S1 × S2, and S1 ×H2 by Pedrosa and Ritoré [PR],
and more recently on certain cones 0}Σ by Morgan and Ritoré [MR] (see Remark
after 2.3).

S. Montiel [Mon] provides some interesting related results on constant mean
curvature hypersurfaces in warped products.

Open questions. Since our results apply only to relatively modest variations of
known examples, many simple examples remain open. For example, are geodesic
spheres about the origin isoperimetric in the paraboloid

{w = x2 + y2 + z2} ⊂ R4?

2. Isoperimetric comparison theorems

We identify compact, n-dimensional surfaces without boundary which minimize
area among homologous surfaces enclosing the same volume, i.e., such that the
region bounded by their difference has net algebraic volume 0. The results apply in
any class of surfaces: smooth submanifolds, piecewise smooth immersions, or the
integral currents of geometric measure theory [M]. As described in the introduction,
the main Theorem 2.1 has a number of interesting corollaries, including Corollary
2.6 on Schwarzschild space.

2.1. Isoperimetric comparison theorem. For any subinterval I ⊂ R and
smooth, compact, n-dimensional Riemannian manifold Σ, consider smooth Rie-
mannian manifolds M0 (“the model”) and M given as twisted products I ×Σ with
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metrics dr2 + ϕ0(r)2 ds2
Σ and dr2 + ϕ(r)2 ds2

Σ. Fix r1 in I. Let A0, A denote the
area of the slice {r} × Σ enclosing volume V with {r1} × Σ, which may be viewed
either as a function of r or as a function of V . Let

a = A(r1)/A0(r1).

Suppose that

a ≤ A(r)/A0(r) for r < r1,(1)

a ≤ A(aV )/A0(V ) ≤ 1 for V > 0.(2)

Then if S = {r1}×Σ minimizes area [uniquely] for net volume 0 with itself in M0,
then it also does so in M . Alternatively uniqueness follows if either inequality in
(2) is strict.

Proof. Consider the map f : M →M0 mapping slices homothetically to slices. Map
S to itself. Continue the map outward, choosing the unique mapping which scales
the volume form at each point by the factor 1/a. By (2), the tangential stretch
t lies between 1 and a−1/n. Since the radial stretch is 1/atn, the area stretch is
at most 1/a. Indeed, if t ≥ 1/atn, the area stretch is at most tn ≤ 1/a, while if
t ≤ 1/atn, the area stretch is at most tn−1/atn = 1/at ≤ 1/a. Continue the map
inward at unit radial velocity. By (1), this part of f stretches area by a factor at
most 1/a and stretches volume at most 1/a.

Consider an S′ satisfying the volume constraint, with areaS′ ≤ areaS. Then
f(S′), with no more volume inside f(S) and the same amount outside, encloses no
less net volume with no more perimeter. Since f(S) is [uniquely] minimizing, these
inequalities must all be equalities and S is [uniquely] minimizing. Alternatively
if the first inequality in (2) is strict, then S′ must lie in {r ≤ r1} and be S. If
the second inequality is strict, then for maximum area stretch S′ must be entirely
tangential and hence be S.

2.2.Remark. One may allow ϕ0 to go to 0 (and M0 to end) at some r2 < r1 before
the lower end of I. In the construction of f in the proof, just map everything extra
to r2. For r ≤ r2, (1) holds trivially. Actually, it generally suffices to check (1)
just for r3 < r < r1 for some r3 > r2, since in the proof the map f inward may
accelerate to have f(r3) = r2 while still keeping the area and volume stretches less
than 1/a. See Remark 2.7.

Examples. Some models M0 for which the slices are known to be minimizing are
Rn+1,Hn+1,Sn+1, the 2-dimensional surfaces of revolution of [MHH] and [R2], and
the (n+ 1)-dimensional cones of [MR]. If you take ϕ = a1/nϕ0 (0 < a < 1) (giving
M a conical singularity at the origin), it follows that all slices of M are minimizing.
Perturbations, yielding more general manifolds with conical singularities, may be
arranged to maintain the hypotheses for at least one minimizing slice.

2.3. Corollary. Let C be the cone over a smooth, compact Riemannian manifold
Σn; i.e., C = [0,∞) × Σ, with metric ds2 = dr2 + r2 ds2

Σ. Suppose that each slice
Cr = {x ∈ C : |x| = r} [uniquely] minimizes perimeter for fixed volume in C. Let
M = I × Σ for any closed interval I ⊂ R with metric dr2 + ϕ2(r) ds2

Σ. Suppose
that

ϕ′ is nondecreasing for all r(1)
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and that

0 ≤ ϕ′ ≤ 1 for all r ≥ r0.(2)

Then every slice Mr = {r} × Σ ⊂ M for r ≥ r0 [uniquely] minimizes perimeter
among smooth surfaces enclosing fixed volume with Sr0 (volume below r0 counting
as negative). Alternatively uniqueness follows if ϕ′ < 1 for r ≥ r0.

Condition (1) holds if and only if the radial sectional curvatures of M (which all
equal −ϕ′′/ϕ) are nonpositive.

Remark. At least with Σ isometrically embedded in some round sphere SN , [MR]
proves that if Σ is connected and RicΣ > n − 1, then the slices Cr are uniquely
minimizing (unless C = Rn+1). Incidentally, if RicΣ ≥ n−1 and ϕ′′2 ≤ 1, then the
tangential Ricci curvature of M is greater than or equal to −ϕ′′/ϕ; for Σ the round
unit sphere, ϕ′′2 ≤ 1 is equivalent to the tangential Ricci curvature of C greater
than or equal to −ϕ′′/ϕ.

Remark. Conditions (1) and (2) are sharp in the sense that if Σ is a round sphere
of radius δ < 1, then Cr has nonnegative second variation for fixed volume if and
only if ϕ′2 − ϕϕ′′ ≤ 1/δ2. (See for example [R2, Lemma 1.6].)

Remark. By Remark 2.2, we may allow conical singularities with ϕ vanishing at
the lower endpoint of I.

Remark. For r < r0, condition (1) may be relaxed to

(ϕ(r0)− ϕ(r))/(r0 − r) ≤ ϕ′(r0).(3)

Also, we do not need to assume ϕ differentiable: (1) may be replaced by “ϕ convex”
and (2) may be replaced by a statement about finite difference quotients: “0 ≤
∆ϕ ≤ ∆r for ∆r ≥ 0.”

Proof of Corollary 2.3. Fix r1, a1/n = ϕ′(r1). If a = 0, S is uniquely minimizing
because projection onto S is distance nonincreasing; equality could hold only for
round spheres in a portion of a round cylinder, among which only S encloses the
prescribed volume.

So we may assume that a > 0. Let M0 be the relevant portion of C, parametrized
so that A(r1)/A0(r1) = a (see Remark 2.2). Now the two hypotheses imply the two
hypotheses of Theorem 2.1. To verify 2.1(2), note that in terms of the areas A and
volumes V of the slices Mr, since A = |Σ|ϕn and dV/dr = A,

ϕ′ =
1

n|Σ|1/nA
1/n dA

dV
=

1
(n+ 1)|Σ|1/n

dA(n+1)/n

dV
.(4)

Hence a ≤ A(aV )/A0(V ) ≤ an/(n+1) ≤ 1. Therefore, Theorem 2.1 applies and
yields the conclusions of Corollary 2.3.

The special case of surfaces of revolution deserves individual mention:

2.4. Corollary. Consider a surface of revolution M , i.e., I × Sn, for any interval
I ⊂ R, with metric dr2 + ϕ2(r) ds2

n, where dsn is the metric on the round unit
sphere. Suppose that

ϕ′ is nondecreasing for all r(1)
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and that

0 ≤ ϕ′ ≤ 1 for all r ≥ r0.(2)

Then every sphere of revolution Sr for r ≥ r0 minimizes perimeter among smooth
surfaces enclosing fixed volume with Sr0 (volume below r0 counting as negative),
uniquely if ϕ′(r) < 1.

Condition (1) holds if and only if M has nonpositive radial Ricci curvature. For
any r, condition (2) holds if and only if Sr has nonnegative mean curvature and M
has nonnegative tangential sectional curvature (or equivalently for n = 2, Sr has
nonnegative Hawking mass).

(Hawking mass for n = 2 is defined as (A/16π)1/2(1−
∫
H2/4π), where the mean

curvature H is the average of the principal curvatures.)

Proof. Most of the proof follows immediately from Corollary 2.3. To prove the final
conditions equivalent to (2), note that mean curvature satisfies

H = (1/n)(dA/dV ) = ϕ′/ϕ

and that tangential sectional curvature equals (1− ϕ′2)/ϕ2 [Pet, p. 71].

Remark. S. Montiel [Mon, Cor. 5] shows under the weaker hypothesis

ϕ′2 − ϕϕ′′ ≤ 1,

with ϕ(0) = 0, ϕ′(0) = 1, that a smooth, star-shaped, constant-mean-curvature
hypersurface must be a sphere of revolution (or a translate if the ambient has
constant curvature).

2.5. Corollary. If a surface of revolution M has nonpositive radial Ricci curvature
and nonnegative tangential sectional curvature, then every sphere of revolution is
uniquely minimizing.

Proof. Apply Corollary 2.4 to both ends of M if necessary.

2.6. Corollary ([B1, Thm. 8]). In the Schwarzschild metric, every sphere of rev-
olution is uniquely minimizing.

2.7.Remark. Using the method of Remark 2.2, [B1, Thm. 10] shows that if M even-
tually coincides with Schwarzschild space, then spheres of revolution are eventually
minimizing.
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