Lp ESTIMATES ON FUNCTIONS OF MARKOV OPERATORS

MICHEL MARIAS

(Communicated by Christopher D. Sogge)

Abstract. We prove Lp estimates for functions of Markov operators on a discrete measure space of superpolynomial volume growth.

Let X be a discrete, measurable space endowed with a measure dx and a measurable distance $d(\cdot,\cdot)$. Let us denote by $B(x;r)$ the ball of center x and radius r. If $|B(x,r)|$ is the dx-measure of $B(x,r)$, we assume that there exist $0 < \alpha' \leq \alpha \leq 1$ and $\kappa, \kappa', c, c' > 0$ such that

$$c'e^{\kappa' r^{\alpha'}} \leq |B(x,r)| \leq ce^{\kappa r^\alpha}, \quad \forall x \in X, r > 0,$$

i.e. X has superpolynomial ($\alpha < 1$) or exponential ($\alpha' = \alpha = 1$) volume growth.

Let us consider a bounded symmetric Markov kernel $P(x,y)$ on X and let us set $P_0(x,y) = \delta_x(y)$, where δ_x is the Dirac mass at x, $P_1(x,y) = P(x,y)$ and $P_n(x,y) = \int P_{n-1}(x,z)P(z,y)dz$ for $n \geq 2$. We assume that there exists constants $c, \beta > 0$ such that

$$P_n(x,y) \leq ce^{-\beta d(x,y)^2/n}$$

for any $x, y \in X$ and $n \in \mathbb{N}$.

Markov chains with transition kernels satisfying an estimate such as (2) were first studied by N.Th. Varopoulos [8]. T.K. Carne [3] proves (2) in the case when X is countable by improving the result of [8]. G. Alexopoulos [1] generalised this in the context of continuous groups.

In the presence of a group structure on X, translation invariant, symmetric Markov kernels are obtained by the convolution powers of a probability measure μ on X. In fact, if μ has a bounded symmetric density f with respect to the left invariant Haar measure dx, then the Markov kernel

$$P(x,y) = f(x^{-1}y)$$

is translation invariant and satisfies

$$P_n(x,y) = f^n(x^{-1}y)$$

where f^n is the $n-$convolution power of f.

Received by the editors September 10, 2000 and, in revised form, November 2, 2000.

1991 Mathematics Subject Classification. Primary 22E25, 22E30, 43A80.

Key words and phrases. Markov chains, multipliers.

©2001 American Mathematical Society
Let \(|x|\) be a word distance. Then by [8], [3] and [1], there exist a \(\beta > 0\) such that
\[
f^n(x^{-1}y) \leq c e^{-\beta \frac{|x^{-1}y|^2}{n}},
\]
for any \(x, y \in X\) and \(n \in \mathbb{N}\).

It is worth mentioning that every locally compact group is at most of exponential volume growth. Further, in [5], Grigorchuck proved that there exist discrete finitely generated groups such that
\[
ce^\alpha \leq |B(x, r)| \leq C e^{r^{\alpha'}}
\]
with \(\alpha, \alpha' \in (0, 1)\). In this case, for a class of symmetric and bounded probability densities \(f\), one can prove that
\[
f^n(x^{-1}y) \leq c e^{-\frac{2^{1/2}}{e} - \beta \frac{|x^{-1}y|^2}{n}}, \quad \forall x, y \in X;
\]
see [6], Remark 1, p. 690.

If \(P\) is the Markov operator with kernel \(P(x,y)\), then \(I-P\) is symmetric, positive, bounded on \(L^2\) and admits the spectral decomposition
\[
I-P = \int_0^{\infty} \lambda dE_\lambda.
\]
Also, for any bounded Borel function \(m\) on \(\mathbb{R}\), by the spectral theorem we can define the operator
\[
m(I-P) = \int_0^{\infty} m(\lambda) dE_\lambda
\]
which is bounded on \(L^2\).

Let us consider the following class \(T\) of Borel functions: \(m \in T\) iff its Fourier transform satisfies
\[
|\hat{m}(t)| \leq c e^{-W|t|}, \quad \forall t \in \mathbb{R},
\]
for some \(W > 0\). The class \(T\) is of the type of multipliers introduced in [4] and [7]. In fact, the class \(\mathcal{F}_0(e^{-W|t|}, b), b > 0\) ([7], p. 787), contains functions \(m\) which satisfy
\[
|\hat{m}^{(k)}(t)| \leq c \left(\frac{k}{b}\right)^k e^{-W|t|}
\]
for any \(t\) and \(k \geq 0\).

We note that if \(m\) is smooth in the zone \(\Omega_W = \{\lambda \in \mathbb{C} : |\text{Im} \lambda| \leq W\}\) and holomorphic on \(\Omega_W\), then it belongs to \(\mathcal{F}_0(e^{-W|t|}, b)\) for some \(b > 0\), iff
\[
|m(\lambda)| \leq c \left(\frac{k}{b}\right)^k (1 + |\lambda|)^{-k/2}
\]
for any \(\lambda \in \overline{\Omega}\) and \(k \geq 0\) ([2], Lemma 5.5).

In [2], G. Alexopoulos proved an analog of the Mikhlin-Hörmander multiplier theorem for random walks on discrete groups of polynomial volume growth. In this article we prove the following analog of the main result of M. Taylor [7].

Theorem. Let as assume that \(P_n\) satisfies [2], \(m \in T\) and that either
(i) \(X\) is of superpolynomial volume growth but not exponential, i.e. assumption [1] is valid with \(\alpha', \alpha \in (0, 1)\),
(ii) X is of exponential volume growth and $\beta > \kappa + \delta$, $W \delta > \frac{\xi}{2}$ where δ is the supremum of $\eta \in (0, e^{-1})$ such that $\eta \leq \max(\beta, e^{-\beta})$.

Then $m(I - P)$ is bounded on L^p, $p \geq 1$.

The proof of the Theorem is based on the following lemmas.

For a fixed $y \in X$ we shall denote by $A_p(y)$, $p \in \mathbb{N}$, the shell $\{x : 2^{p/2} \leq d(x, y) \leq 2^{(p+1)/2}\}$. Let us also recall that the Dirac mass δ_y at y is in $L^2(X)$ if X is discrete.

Lemma 1. There is $\eta \in (0, e^{-1})$ with $\eta \leq \max(\beta, e^{-\beta})$ such that for all $p \in \mathbb{N}$, $x \in A_p(y)$ and $\|t\| \leq \eta 2^{p/2}$,

$$|e^{itP}(\delta_y)(x)| \leq ce^{-(\beta - \eta)d(x, y)}. \quad (4)$$

Proof. We have that

$$e^{itP}\delta_y(x) = \sum_{n \geq 0} \frac{(it)^n}{n!} P^n \delta_y(x)$$

$$= \sum_{n \leq 2^{p/2}} \frac{(it)^n}{n!} P^n(x, y) + \sum_{n > 2^{p/2}} \frac{(it)^n}{n!} P^n(x, y) = I_1 + I_2.$$

It follows from (4) that for $x \in A_p(y)$ and $\|t\| \leq \eta 2^{p/2}$

$$|I_1| \leq c \sum_{n \leq 2^{p/2}} \frac{(\eta 2^{p/2})^n}{n!} e^{-\beta 2^{p/2}}$$

$$\leq ce^{-\beta 2^{p/2}} e^{\eta 2^{p/2}} = ce^{-(\beta - \eta)2^{p/2}}.$$

By (2) and Stirling’s formula $n! \sim \sqrt{n} \left(\frac{n}{e}\right)^n$, we get that

$$|I_2| \leq c \sum_{n > 2^{p/2}} \frac{(\eta 2^{p/2})^n}{n!} \leq c \sum_{n > 2^{p/2}} \left(\frac{\eta 2^{p/2} e}{n}\right)^n \frac{1}{\sqrt{n}}$$

$$\leq c \frac{1}{2^{(p-1)/4}} \sum_{n > 2^{p/2}} (\eta e)^n \leq c \frac{1}{2^{(p-1)/4}} (\eta e)^{2^{p/2}}$$

provided that $\eta e < 1$.

Now,

$$(\eta e)^{2^{p/2}} = e^{2^{p/2} \log(\eta e)} \leq e^{-(\beta - \eta)2^{p/2}}$$

provided that

$$\log(\eta e) \leq -(\beta - \eta)$$

which holds true if

$$\eta e \leq e^\eta e^{-\beta} \text{ or } \eta \leq e^{-\beta}$$

since $\eta < 1$.

Since

$$m(I - P) = \int_{\mathbb{R}} \hat{m}(t)e^{it(I - P)}dt$$
the kernel $K(x, y)$ of the operator $m(I - P)$ is given by

$$K(x, y) = \int_{\mathbb{R}} \hat{m}(t)e^{it(I - P)}\delta_y(x)dt$$

$$= \int_{|t| \leq \eta 2^{p/2}} + \int_{|t| \geq \eta 2^{p/2}} = K_0(x, y) + K_\infty(x, y).$$

We have the following:

Lemma 2. Let η be as in the Theorem. Then there is $c > 0$ such that

$$\int_X |K_0(x, y)| \, dx \leq c \sum_{p \geq 0} e^{-\eta(W - \epsilon)2^{p/2}} 2^{p/2} |A_p(y)|.$$

Also, for any $\epsilon > 0$, there is $c > 0$ such that

$$\int_X |K_\infty(x, y)| \, dx \leq c \sum_{p \geq 0} e^{-\eta(W - \epsilon)2^{p/2}} |A_p(y)|^{1/2}.$$

Proof. It follows from (4) and (3) that for $x \in A_p(y)$

$$|K_0(x, y)| \leq c \int_{|t| \leq \eta 2^{p/2}} |\hat{m}(t)| e^{-(\beta - \eta)d(x, y)} \, dt$$

$$\leq c e^{-(\beta - \eta)2^{p/2}} \eta 2^{p/2}.$$

Thus, by using (11)

$$\int_X |K_0(x, y)| \, dx = \sum_{p \geq 0} \int_{A_p(y)} |K_0(x, y)| \, dx$$

$$\leq c \sum_{p \geq 0} e^{-(\beta - \eta)2^{p/2}} \eta 2^{p/2} \int_{A_p(y)} dx$$

$$\leq c \sum_{p \geq 0} e^{-(\beta - \eta)2^{p/2}} 2^{p/2} |A_p(y)|.$$

On the other hand, by the Cauchy-Schwarz inequality, (11), (2), the decay of $\hat{m}(t)$ for t large and the fact that the Dirac mass $\delta_y \in L^2(X)$, we get that

$$\int_{A_p(y)} |K_\infty(x, y)| \, dx \leq \int_{A_p(y)} \left(\int_{|t| \geq \eta 2^{p/2}} |\hat{m}(t)| e^{it(I - P)}\delta_y(x) \, dt \right) \, dx$$

$$\leq c \int_{|t| \geq \eta 2^{p/2}} |\hat{m}(t)| dt \int_{A_p(y)} \left| e^{itP}\delta_y(x) \right| \, dx$$

$$\leq c \int_{|t| \geq \eta 2^{p/2}} |\hat{m}(t)| |A_p(y)|^{1/2} \left\| e^{itP} \right\|_2 \|\delta_y\|_2 dt$$

$$\leq c |A_p(y)|^{1/2} \int_{|t| \geq \eta 2^{p/2}} |\hat{m}(t)| dt$$

$$\leq c |A_p(y)|^{1/2} e^{-\eta(W - \epsilon)2^{p/2}} \int_{|t| \geq \eta 2^{p/2}} e^{-\epsilon|t|} \, dt$$

$$\leq c |A_p(y)|^{1/2} e^{-\eta(W - \epsilon)2^{p/2}}.$$
Therefore,
\[
\int_X |K_\infty(x, y)| \, dx = \sum_{p \geq 0} \int A_p(y) |K_\infty(x, y)| \, dx \\
\leq c \sum_{p \geq 0} c |A_p(y)|^{1/2} e^{-W_\varepsilon 2^p/2}.
\]

Proof of the Theorem. (i) Let us assume that (1) holds for \(\alpha', \alpha \in (0, 1) \). Then by (5) and (6) we get that
\[
\int_X |K(x, y)| \, dx \\
\leq c \sum_{p \geq 0} e^{-(\beta - \eta)2^p/2} 2^p/2 |A_p(y)| + c \sum_{p \geq 0} e^{-\eta(W_\varepsilon)2^p/2} |A_p(y)|^{1/2} \\
\leq c \sum_{p \geq 0} e^{-(\beta - \eta)2^p/2} 2^p/2 e^{\kappa(2^p/2)\alpha} + \sum_{p \geq 0} e^{-\eta(W_\varepsilon)2^p/2} e^{\frac{\kappa}{2}(2^p/2)\alpha} < \infty.
\]
This implies that \(m(I - P) \) is bounded on \(L^\infty(X) \). As already mentioned, by the spectral theorem \(m(I - P) \) is bounded on \(L^2(X) \) and by interpolation and duality we obtain the boundedness of \(m(I - P) \) on \(L^p(X) \), \(p \geq 1 \).

(ii) Similarly, if \(\|B(x, r)\| \leq c e^{\kappa r} \), then
\[
\int_X |K(x, y)| \, dx \\
\leq c \sum_{p \geq 0} e^{-(\beta - \eta)2^p/2} 2^p/2 e^{\kappa2^p/2} + \sum_{p \geq 0} e^{-\eta(W_\varepsilon)2^p/2} e^{\frac{\kappa}{2}2^p/2} < \infty,
\]
provided that \(\beta > \kappa + \eta \) and \(\eta W > \kappa/2 \) and the boundedness of \(m(I - P) \) on \(L^\infty(X) \) follows.

REFERENCES

DEPARTMENT OF MATHEMATICS, ARISTOTLE UNIVERSITY OF THESSALONIKI, THESSALONIKI 54006, GREECE

E-mail address: marias@ccf.auth.gr