EVALUATIONS OF INITIAL IDEALS AND CASTELNUOVO-MUMFORD REGULARITY

NGÔ VIÊT TRUNG

(Communicated by Wolmer V. Vasconcelos)

Abstract

This paper characterizes the Castelnuovo-Mumford regularity by evaluating the initial ideal with respect to the reverse lexicographic order.

1. Introduction

Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field k of arbitrary characteristic. Let $I \subset S$ be an arbitrary homogeneous ideal and

$$
0 \longrightarrow F_{p} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow S / I \longrightarrow 0
$$

a graded minimal free resolution of S / I. Write b_{i} for the maximum degree of the generators of F_{i}. The Castelnuovo-Mumford regularity

$$
\operatorname{reg}(S / I):=\max \left\{b_{i}-i \mid i=0, \ldots, p\right\}
$$

is a measure for the complexity of I in computational problems [EG], $\overline{\mathrm{BM}}, \boxed{\mathrm{V}}$. One can use Buchsberger's syzygy algorithm to compute reg (S / I). However, such a computation is often very big. Theoretically, if $\operatorname{char}(k)=0, \operatorname{reg}(S / I)$ is equal to the largest degree of the generators of the generic initial ideal of I with respect to the reverse lexicographic order [BS]. But it is difficult to know when an initial ideal is generic. Therefore, it would be of interest to have other methods for the computation of $\operatorname{reg}(S / I)$.

The aim of this paper is to present a simple method for the computation of $\operatorname{reg}(S / I)$ which is based only on evaluations of in (I), where in (I) denotes the initial ideal of I with respect to the reverse lexicographic order. We are inspired by a recent paper of Bermejo and Gimenez [BG] which gives such a method for the computation of the Castelnuovo-Mumford regularity of projective curves.

Let $d=\operatorname{dim} S / I$. For $i=0, \ldots, d$ put $S_{i}=k\left[x_{1}, \ldots, x_{n-i}\right]$. Let J_{i} be the ideal of S_{i} obtained from $\operatorname{in}(I)$ by the evaluation $x_{n-i+1}=\cdots=x_{n}=0$. Let \tilde{J}_{i} denote the ideal of S_{i} obtained from J_{i} by the evaluation $x_{n-i}=1$. These ideals can be easily computed from the generators of $\operatorname{in}(I)$. In fact, if $\operatorname{in}(I)=\left(f_{1}, \ldots, f_{s}\right)$, where f_{1}, \ldots, f_{s} are monomials in S, then J_{i} is generated by the monomials f_{j} not divided

[^0]by any of the variables x_{n-i+1}, \ldots, x_{n} and \tilde{J}_{i} by those monomials obtained from the latter by setting $x_{n-i}=1$. Put
$$
c_{i}(I):=\sup \left\{r \mid\left(\tilde{J}_{i} / J_{i}\right)_{r} \neq 0\right\}
$$
with $c_{i}(I)=-\infty$ if $\tilde{J}_{i}=J_{i}$ and
$$
r(I):=\sup \left\{r \mid\left(S_{d} / J_{d}\right)_{r} \neq 0\right\}
$$

We can express $\operatorname{reg}(S / I)$ in terms of these numbers as follows. Assume that $c_{i}(I)<\infty$ for $i=0, \ldots, d-1$. Then

$$
\operatorname{reg}(S / I)=\max \left\{c_{0}(I), \ldots, c_{d-1}(I), r(I)\right\}
$$

The assumption $c_{i}(I)<\infty$ for $i=0, \ldots, d-1$ is satisfied for a sufficiently general choice of the variables. If I is the defining saturated ideal of a projective (not necessarily reduced) curve, this assumption is automatically satisfied if $k\left[x_{n-1}, x_{n}\right]$ is a Noether normalization of S / I. In this case, $c_{0}(I)=-\infty$ and $\operatorname{reg}(S / I)=$ $\max \left\{c_{1}(I), r(I)\right\}$. From this formula we can easily deduce the results of Bermejo and Gimenez.

Similarly we can compute the partial regularities $\ell-\operatorname{reg}(S / I):=\max \left\{b_{i}-i \mid i \geq \ell\right\}$, $\ell>0$, which were recently introduced by Bayer, Charalambous and Popescu $[\widehat{\mathrm{BCP}}]$ (see also Aramova and Herzog [AH]). These regularities can be defined in terms of local cohomology. Let \mathfrak{m} denote the maximal homogeneous ideal of S. Let $H_{\mathfrak{m}}^{i}(S / I)$ denote the i th local cohomology module of S / I with respect to \mathfrak{m} and set $a_{i}(S / I)=$ $\max \left\{r \mid H_{\mathfrak{m}}^{i}(S / I)_{r} \neq 0\right\}$ with $a_{i}(S / I)=-\infty$ if $H_{\mathfrak{m}}^{i}(S / I)=0$. For $t \geq 0$ we define $\operatorname{reg}_{t}(S / I):=\max \left\{a_{i}(S / I)+i \mid i=0, \ldots, t\right\} . \operatorname{Then}^{\operatorname{reg}_{t}}(S / I)=(n-t)-\operatorname{reg}(S / I)$ [T2]. Under the assumption $c_{i}(I)<\infty$ for $i=0, \ldots, t$ we obtain the following formula:

$$
\operatorname{reg}_{t}(S / I)=\max \left\{c_{i}(I) \mid i=0, \ldots, t\right\}
$$

The numbers $c_{i}(I)$ also allow us to determine the place at which $\operatorname{reg}(S / I)$ is attained in the minimal free resolution of S / I. In fact, $\operatorname{reg}(S / I)=b_{t}-t$ if $c_{t}(I)=$ $\max \left\{c_{i}(I) \mid i=0, \ldots, d\right\}$. Moreover, $r(I)$ can be used to estimate the reduction number of S / I which is another measure for the complexity of I V].

It turns out that the numbers $c_{i}(I)$ and $r(I)$ can be described combinatorially in terms of the lattice vectors of the generators of in (I) (see Propositions 4.1-4.3 for details). These descriptions together with the above formulae give an effective method for the computation of $\operatorname{reg}(S / I)$ and $\operatorname{reg}_{t}(S / I)$. From this we can derive the estimation

$$
\operatorname{reg}_{t}(S / I) \leq \max \left\{\operatorname{deg} g_{i}-n+i \mid i=0, \ldots, t\right\}
$$

where g_{i} is the least common multiple of the minimal generators of $\operatorname{in}(I)$ which are not divided by any of the variables x_{n-i+1}, \ldots, x_{n}.

This paper is organized as follows. In Section 2 we prepare some facts on the Castelnuovo-Mumford regularity. In Section 3 we prove the above formulae for $\operatorname{reg}(S / I)$ and $\operatorname{reg}_{t}(S / I)$. The combinatorial descriptions of $c_{i}(I)$ and $r(I)$ are given in Section 4. Section 5 deals with the case of projective curves.

2. Filter-Regular sequence of linear forms

We shall keep the notations of the preceding section. Let $\mathbf{z}=z_{1}, \ldots, z_{t+1}$ be a sequence of homogeneous elements of $S, t \geq 0$. We call \mathbf{z} a filter-regular sequence for S / I if $z_{i+1} \notin \mathfrak{p}$ for any associated prime $\mathfrak{p} \neq \mathfrak{m}$ of $\left(I, z_{1}, \ldots, z_{i}\right), i=0, \ldots, t$.

This notion was introduced in order to characterize generalized Cohen-Macaulay rings STC. Recall that S / I is a generalized Cohen-Macaulay ring if and only if I is equidimensional and $(R / I)_{\mathfrak{p}}$ is a Cohen-Macaulay ring for every prime ideal $\mathfrak{p} \neq \mathfrak{m}$. This condition is satisfied if I is the defining ideal of a projective curve. We call \mathbf{z} a homogeneous system of parameters for S / I if $t+1=d$ and $\left(I, z_{1}, \ldots, z_{d}\right)$ is an \mathfrak{m}-primary ideal. It is known that every homogeneous system of parameters for S / I is a filter-regular sequence if S / I is a generalized Cohen-Macaulay ring. In general, a homogeneous system of parameters need not be a filter-regular sequence. However, if k is an infinite field, any ideal which is primary to the maximal graded ideal and which is generated by linear forms can be generated by a homogeneous filter-regular sequence (proof of [T1, Lemma 3.1]).

For $i=0, \ldots, t$ we put

$$
a_{\mathbf{z}}^{i}(S / I):=\sup \left\{r \mid\left[\left(I, z_{1}, \ldots, z_{i}\right): z_{i+1}\right]_{r} \neq\left(I, z_{1}, \ldots, z_{i}\right)_{r}\right\}
$$

with $a_{\mathbf{z}}^{i}(S / I)=-\infty$ if $\left(I, z_{1}, \ldots, z_{i}\right): z_{i+1}=\left(I, z_{1}, \ldots, z_{i}\right)$. These invariants can be ∞ and they are a measure for how far \mathbf{z} is from being a regular sequence in S / I. It can be shown that \mathbf{z} is a filter-regular sequence for S / I if and only if $a_{\mathbf{z}}^{i}(S / I)<\infty$ for $i=0, \ldots, t$ T1] Lemma 2.1]. Note that our definition of $a_{\mathbf{z}}^{i}(S / I)$ is one less than that in [1]. There is the following close relationship between these numbers and the partial regularity of S / I.
Theorem 2.1 ([T1 Proposition 2.2]). Let \mathbf{z} be a filter-regular sequence of linear forms for S / I. Then

$$
\operatorname{reg}_{t}(S / I)=\max \left\{a_{\mathbf{z}}^{i}(S / I) \mid i=0, \ldots, t\right\}
$$

We will use the following characterization of $a_{\mathbf{z}}^{i}(S / I)$.
Lemma 2.2. $a_{\mathbf{z}}^{i}(S / I)=\max \left\{r \mid\left[\bigcup_{m \geq 1}\left(I, z_{1}, \ldots, z_{i}\right): z_{i+1}^{m}\right]_{r} \neq\left(I, z_{1}, \ldots, z_{i}\right)_{r}\right\}$.
Proof. Put $r_{0}=\max \left\{r \mid\left[\bigcup_{m \geq 1}\left(I, z_{1}, \ldots, z_{i}\right): z_{i+1}^{m}\right]_{r} \neq\left(I, z_{1}, \ldots, z_{i}\right)_{r}\right\}$. By definition, $a_{\mathbf{z}}^{i}(S / I) \leq r_{0}$. Conversely, if y is an element of $\left.\bigcup_{m \geq 1}\left(I, z_{1}, \ldots, z_{i}\right): z_{i+1}^{m}\right]_{r_{0}}$, then

$$
y z_{i+1} \in\left[\bigcup_{m \geq 1}\left(I, z_{1}, \ldots, z_{i}\right): z_{i+1}^{m}\right]_{r_{0}+1}=\left(I, z_{1}, \ldots, z_{i}\right)_{r_{0}+1}
$$

Hence $y \in\left[\left(I, z_{1}, \ldots, z_{i}\right): z_{i+1}\right]_{r_{0}}$. This implies $r_{0} \leq a_{\mathbf{z}}^{i}(S / I)$. So we get $r_{0}=$ $a_{\mathbf{z}}^{i}(S / I)$.

Since $\operatorname{reg}(S / I)=\operatorname{reg}_{d}(S / I)$, to compute $\operatorname{reg}(S / I)$ we need a filter-regular sequence of linear forms of length $d+1$. But that can be avoided by the following observation.
Lemma 2.3. Let $\mathbf{z}=z_{1}, \ldots, z_{d}$ be a filter-regular sequence for $S / I, d=\operatorname{dim}(S / I)$. Then \mathbf{z} is a system of parameters for S / I.

Proof. Let \mathfrak{p} be an arbitrary associated prime \mathfrak{p} of $\left(I, z_{1}, \ldots, z_{i}\right)$ with $\operatorname{dim} S / \mathfrak{p}=$ $d-i, i=0, \ldots, d-1$. Then $\mathfrak{p} \neq \mathfrak{m}$ because $\operatorname{dim} S / \mathfrak{p}>0$. By the definition of a filter-regular sequence, $z_{i+1} \notin \mathfrak{p}$. Hence \mathbf{z} is a homogeneous system of parameters for S / I.

If \mathbf{z} is a homogeneous system of parameters for S / I, then $S /\left(I, z_{1}, \ldots, z_{d}\right)$ is of finite length. Hence $\left(S /\left(I, z_{1}, \ldots, z_{d}\right)\right)_{r}=0$ for r large enough. Following [NR] we call

$$
r_{\mathbf{z}}(S / I):=\max \left\{r \mid\left(S /\left(I, z_{1}, \ldots, z_{d}\right)\right)_{r} \neq 0\right\}
$$

the reduction number of S / I with respect to \mathbf{z}. It is equal to the maximum degree of the generators of S / I as a module over $k\left[z_{1}, \ldots, z_{d}\right][\overline{\mathrm{V}}$. Note that the minimum of $r_{\mathbf{z}}(S / I)$ is called the reduction number of S / I.

Theorem 2.4 ([BS, Theorem 1.10], [T1, Corollary 3.3]). Let \mathbf{z} be a filter-regular sequence of d linear forms for S / I. Then

$$
\operatorname{reg}(S / I)=\max \left\{a_{\mathbf{z}}^{0}(S / I), \ldots, a_{\mathbf{z}}^{d-1}(S / I), r_{\mathbf{z}}(S / I)\right\}
$$

Remark. Theorem 2.4 was proved in BS under an additional condition on the maximum degree of the generators of I.

3. Evaluations of the initial ideal

Let $c_{i}(I), i=0, \ldots, d$, and $r(I)$ be the invariants defined in Section 1 by means of evaluations of in (I), where $\operatorname{in}(I)$ is the initial ideal of I with respect to the reverse lexicographic order. We will use the results of Section 2 to express $\operatorname{reg}_{t}(S / I)$ and $\operatorname{reg}(S / I)$ in terms of $c_{i}(I)$ and $r(I)$.

Lemma 3.1. For $\mathbf{z}=x_{n}, \ldots, x_{n-t}$ and $i=0, \ldots, t$ we have

$$
a_{\mathbf{z}}^{i}(S / I)=c_{i}(I)
$$

Proof. By [BS, Lemma (2.2)], $\left[\left(I, x_{n}, \ldots, x_{n-i+1}\right): x_{n-i}\right]_{r}=\left(I, x_{n}, \ldots, x_{n-i+1}\right)_{r}$ if and only if $\left[\left(\operatorname{in}(I), x_{n}, \ldots, x_{n-i+1}\right): x_{n-i}\right]_{r}=\left(\operatorname{in}(I), x_{n}, \ldots, x_{n-i+1}\right)_{r}$ for all $r \geq 0$. Therefore

$$
a_{\mathbf{z}}^{i}(S / I)=a_{\mathbf{z}}^{i}(S / \operatorname{in}(I))
$$

By Lemma 2.2 we get

$$
\begin{aligned}
& a_{\mathbf{z}}^{i}(S / \operatorname{in}(I))=\sup \left\{r \mid\left[\bigcup_{m \geq 1}\left(\operatorname{in}(I), x_{n}, \ldots, x_{n-i+1}\right): x_{n-i}^{m}\right]_{r}\right. \\
& \left.\neq\left(\operatorname{in}(I), x_{n}, \ldots, x_{n-i+1}\right)_{r}\right\} .
\end{aligned}
$$

Note that J_{i} is the ideal of $S_{i}=k\left[x_{1}, \ldots, x_{n-i}\right]$ obtained from in (I) by the evaluation $x_{n-i+1}=\cdots=x_{n}=0$ and that this evaluation corresponds to the canonical isomorphism $S /\left(x_{n-i+1}, \ldots, x_{n}\right) \cong S_{i}$. Then we may rewrite the above formula as

$$
a_{\mathbf{z}}^{i}(S / \operatorname{in}(I))=\sup \left\{r \mid\left[\bigcup_{m \geq 1} J_{i}: x_{n-i}^{m}\right]_{r} \neq\left(J_{i}\right)_{r}\right\}
$$

Since J_{i} is a monomial ideal, $\bigcup_{m \geq 1} J_{i}: x_{n-i}^{m}$ is generated by the monomials g in the variables x_{1}, \ldots, x_{n-i-1} for which there exists an integer $m \geq 1$ such that $g x_{n-i}^{m} \in J_{i}$. Such a monomial g is determined by the condition $g \in \tilde{J}_{i}$. Hence

$$
a_{\mathbf{z}}^{i}(S / \operatorname{in}(I))=\sup \left\{r \mid\left(\tilde{J}_{i}\right)_{r} \neq\left(J_{i}\right)_{r}\right\}=c_{i}(I)
$$

As a consequence of Lemma 3.1 we can use the invariants $c_{i}(I)$ to check when x_{n}, \ldots, x_{n-t} is a regular resp. filter-regular sequence for S / I.

Corollary 3.2. x_{n-i} is a non-zerodivisor in $S /\left(I, x_{n}, \ldots, x_{n-i+1}\right)$ if and only if $c_{i}(I)=-\infty$.

Proof. By definition, $a_{\mathbf{z}}^{i}(S / I)=-\infty$ if and only if x_{n-i} is a non-zerodivisor in $S /\left(I, x_{n}, \ldots, x_{n-i+1}\right)$. Hence the conclusion follows from Lemma 3.1

Corollary 3.3. Let $\mathbf{z}=x_{n}, \ldots, x_{n-t}$. Then \mathbf{z} is a filter-regular sequence for S / I if and only if $c_{i}(I)<\infty$ for $i=0, \ldots, t$.

Proof. It is known that \mathbf{z} is a filter-regular sequence for S / I if and only if $a_{\mathbf{z}}^{i}(S / I)<$ ∞ for $i=0, \ldots, t$ T1 Lemma 2.1].

Now we can characterize $\operatorname{reg}_{t}(S / I)$ as follows.
Theorem 3.4. Assume that $c_{i}(I)<\infty$ for $i=0, \ldots, t$. Then

$$
\operatorname{reg}_{t}(S / I)=\max \left\{c_{i}(I) \mid i=0, \ldots, t\right\}
$$

Proof. This follows from Theorem 2.1 Lemma 3.1 and Corollary 3.3
We can also give a characterization of $\operatorname{reg}(S / I)$ which involves $r(I)$.
Lemma 3.5. Assume that $c_{i}(I)<\infty$ for $i=0, \ldots, d-1$. Then

$$
r_{\mathbf{z}}(S / I)=r(I)
$$

Proof. By Corollary 3.3 $\mathbf{z}=x_{n}, \ldots, x_{n-d+1}$ is a filter-regular sequence for S / I. By Lemma 2.3] and [T2, Theorem 4.1], this implies that \mathbf{z} is a homogeneous system of parameters for $S / \mathrm{in}(I)$ with

$$
r_{\mathbf{z}}(S / I)=r_{\mathbf{z}}(S / \operatorname{in}(I))
$$

Note that $S /\left(x_{n-d+1}, \ldots, x_{n}\right) \cong S_{d}$ and that J_{d} is the ideal obtained from $\operatorname{in}(I)$ by the evaluation $x_{n-d+1}=\cdots=x_{n}=0$. Then

$$
\begin{aligned}
r_{\mathbf{z}}(S / \operatorname{in}(I)) & =\max \left\{r \mid\left(S /\left(\operatorname{in}(I), x_{n}, \ldots, x_{n-d+1}\right)\right)_{r} \neq 0\right\} \\
& =\max \left\{r \mid\left(S_{d} / J_{d}\right)_{r} \neq 0\right\} \\
& =r(I)
\end{aligned}
$$

Theorem 3.6. Assume that $c_{i}(I)<\infty$ for $i=0, \ldots, d-1$. Then

$$
\operatorname{reg}(S / I)=\max \left\{c_{0}(I), \ldots, c_{d-1}(I), r(I)\right\}
$$

Proof. This follows from Theorem [2.4 Lemma 3.1 Corollary 3.3 and Lemma 3.5

4. Combinatorial description

First, we want to show that the condition $c_{i}(I)<\infty$ can be easily checked in terms of the lattice vectors of the generators of in (I). Let \mathcal{B} be the (finite) set of monomials which minimally generates $\operatorname{in}(I)$. We set

$$
E_{i}:=\left\{v \in \mathbb{N}^{n-i} \mid x^{v} \in \mathcal{B}\right\}
$$

where $x^{v}=x_{1}^{\varepsilon_{1}} \cdots x_{s}^{\varepsilon_{s}}$ if $v=\left(\varepsilon_{1}, \ldots, \varepsilon_{s}\right)$. For $j=1, \ldots, n-i$ we denote by p_{j} the projection from \mathbb{N}^{n-i} to \mathbb{N}^{n-i-1} which deletes the j th coordinate. For two lattice vectors $a=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ and $b=\left(\beta_{1}, \ldots, \beta_{s}\right)$ of the same size we say $a \geq b$ if $\alpha_{j} \geq \beta_{j}$ for $j=1, \ldots, s$.

Lemma 4.1. $c_{i}(I)<\infty$ if and only if for every element $a \in p_{n-i}\left(E_{i}\right) \backslash E_{i+1}$ there are elements $b_{j} \in E_{i+1}$ such that $p_{j}(a) \geq p_{j}\left(b_{j}\right), j=1, \ldots, n-i-1$.

Proof. Recall that $c_{i}(I)=\sup \left\{r \mid\left(\tilde{J}_{i} / J_{i}\right)_{r} \neq 0\right\}$. Then $c_{i}(I)<\infty$ if and only if \tilde{J}_{i} / J_{i} is of finite length. By the definition of J_{i} and \tilde{J}_{i}, the latter condition is equivalent to the existence of a number r such that $x_{j}^{r} \tilde{J}_{i} \subseteq J_{i}$ for $j=1, \ldots, n-i$. It is clear that J_{i} is generated by the monomials x^{v} with $v \in E_{i}$. From this it follows that \tilde{J}_{i} is generated by J_{i} and the monomials x^{a} with $a \in p_{n-i}\left(E_{i}\right) \backslash E_{i+1}$. For such a monomial x^{a} we can always find a number r such that $x_{n-i}^{r} x^{a} \in J_{i}$. For $j<n-i, x_{j}^{r} x^{a} \in J_{i}$ if and only if $x_{j}^{r} x^{a}$ is divided by a generator $x^{b_{j}}$ of J_{i}. Since $x_{j}^{r} x^{a}$ does not contain x_{n-i}, \ldots, x_{n}, so does $x^{b_{j}}$. Hence $b_{j} \in E_{i+1}$. Setting $x_{j}=1$ we see that $x_{j}^{r} x^{a}$ is divided by $x^{b_{j}}$ for some number r if and only if $p_{j}(a) \geq p_{j}\left(b_{j}\right)$.

If $c_{i}(I)=\infty$, we should make a random linear transformation of the variables x_{1}, \ldots, x_{n-i} and test the condition $c_{i}(I)<\infty$ again. By Lemma 3.1 the linear transformation does not change the invariants $c_{j}(I)$ for $j<i$. Moreover, instead of $\operatorname{in}(I)$ we only need to compute the smaller initial ideal $\operatorname{in}\left(I_{i}\right)$, where I_{i} denotes the ideal of S_{i} obtained from I by the evaluation $x_{n-i+1}=\cdots=x_{n}=0$. Let \mathcal{B}_{i} be the set of monomials which minimally generates in $\left(I_{i}\right)$. It is easy to see that \mathcal{B}_{i} is the set of the monomials of \mathcal{B} which are not divided by x_{n-i+1}, \ldots, x_{n}. From this it follows that $E_{j}=\left\{v \in \mathbb{N}^{n-j} \mid x^{v} \in \mathcal{B}_{i}\right\}$ for $j \leq i$. Thus, we can use this formula to compute E_{j} and to check the condition $c_{j}(I)<\infty$ for $j \leq i$. Once we know $c_{i}(I)<\infty$ we can proceed to compute $c_{i}(I)$.

In the lattice \mathbb{N}^{n-i} we delete the shadow of E_{i}, that is, the set of elements a for which there is $v \in E_{i}$ with $v \leq a$. The remaining lattice has the shape of a staircase and we will denote by F_{i} the set of its corners. It is easy to see that F_{i} is the set of the elements of the form $a=\max \left(v_{1}, \ldots, v_{n-i}\right)-(1, \ldots, 1)$ with $a \nsupseteq v$ for any element $v \in E_{i}$, where v_{1}, \ldots, v_{n-i} is a family of $n-i$ elements of E_{i} for which the j th coordinate of v_{j} is greater than the j th coordinate of v_{h} for all $h \neq j, j=1, \ldots, n-i$, and $\max \left(v_{1}, \ldots, v_{n-i}\right)$ denotes the element whose coordinates are the maxima of the corresponding coordinates of v_{1}, \ldots, v_{n-i}. If $a=\left(\alpha_{1}, \ldots, \alpha_{n-i}\right)$, we set

$$
|a|:=\alpha_{1}+\ldots+\alpha_{n-i} .
$$

Proposition 4.2. Assume that $c_{i}(I)<\infty$. Then $c_{i}(I)=-\infty$ if $F_{i}=\emptyset$ and $c_{i}(I)=\max _{a \in F_{i}}|a|$ if $F_{i} \neq-\emptyset$.

Proof. Let a be an arbitrary element of F_{i}. Then $a=\max \left(v_{1}, \ldots, v_{n-i}\right)-(1, \ldots, 1)$ for some family v_{1}, \ldots, v_{n-i} of S_{i}. Let $v_{j}=\left(\varepsilon_{j 1}, \ldots, \varepsilon_{j n-i}\right), j=1, \ldots, n-i$. Then $a=\left(\varepsilon_{11}-1, \ldots, \varepsilon_{n-i n-i}-1\right)$. Since $\varepsilon_{j j}>\varepsilon_{h j}$ for $h \neq j$, we get $a \geq$ $\left(\varepsilon_{n-i 1}, \ldots, \varepsilon_{n-i n-i-1}, 0\right)$. Therefore, x^{a} is divided by the monomial obtained from $x^{v_{n-i}}$ by setting $x_{n-i}=1$. Note that J_{i} is generated by the monomials x^{v} with $x_{v} \in E_{i}$. Since $v_{n-i} \in E_{i}$, we have $x^{v_{n-i}} \in J_{i}$, whence $x^{a} \in \tilde{J}_{i}$. On the other hand, $x^{a} \notin J_{i}$ because $a \nsupseteq v$ for any element $v \in E_{i}$. Since $|a|=\operatorname{deg} x^{a}$, this implies $\left(\tilde{J}_{i} / J_{i}\right)_{|a|} \neq 0$. Hence $|a| \leq c_{i}(I)$. So we obtain $\max _{a \in F_{i}}|a| \leq c_{i}(I)$ if $F_{i} \neq \emptyset$.

To prove the converse inequality we assume that $\tilde{J}_{i} / J_{i} \neq 0$. Since $c_{i}(I)<\infty$, there is a monomial $x^{b} \in \tilde{J}_{i} \backslash J_{i}$ such that $\operatorname{deg} x^{b}=c_{i}(I)$. Since $x^{b} \notin J_{i}, b \nsupseteq v$ for any element $v \in E_{i}$. For $j=1, \ldots, n-i$ we have $x_{j} x^{b} \in J_{i}$ because $\operatorname{deg} x_{j} x^{b}=$ $c_{i}(I)+1$. Therefore, $x_{j} x^{b}$ is divided by some monomial $x^{v_{j}}$ with $v_{j} \in E_{i}$. Let $b=\left(\beta_{1}, \ldots, \beta_{n-i}\right)$ and $v_{j}=\left(\varepsilon_{j 1}, \ldots, \varepsilon_{j n-i}\right)$. Then $\beta_{h} \geq \varepsilon_{j h}$ for $h \neq j$ and $\beta_{j}+1 \geq \varepsilon_{j j}$.

Since $b \not \geqq v_{j}$, we must have $\beta_{j}<\varepsilon_{j j}$, hence $\beta_{j}=\varepsilon_{j j}-1$. It follows that $\varepsilon_{j j}=\beta_{j}+1>\varepsilon_{h j}$ for all $h \neq j$. Thus, the family v_{1}, \ldots, v_{n-i} belongs to \mathcal{S}_{i} and $b=\max \left(v_{1}, \ldots, v_{n-i}\right)-(1, \ldots, 1)$. So we have proved that $b \in F_{i}$. Hence $c_{i}(I)=\operatorname{deg} x^{b}=|b| \leq \max _{a \in F_{i}}|a|$.

The above argument also shows that $F_{i} \neq \emptyset$ if $\tilde{J}_{i} \neq J_{i}$. So $c_{i}(I)=-\infty$ if $F_{i}=\emptyset$.

By Corollary 3.3 if $c_{i}(I)<\infty$ for $i=0, \ldots, d-1$, then $\mathbf{z}=x_{n}, \ldots, x_{n-d+1}$ is a filter-regular sequence for S / I. By Lemma 2.3 and Lemma 3.5 that implies $r(I)=r_{\mathbf{z}}(S / I)<\infty$. In this case, we have the following description of $r(I)$.

Proposition 4.3. Assume that $r(I)<\infty$. Then $r(I)=\max _{a \in F_{d}}|a|$.
Proof. This can be proved similarly to the proof of Lemma 4.2
Combining the above results with Theorem 3.4 and Theorem 3.6 we get a simple method to compute $\operatorname{reg}_{t}(S / I)$ and $\operatorname{reg}(S / I)$. We will illustrate the above method by an example at the end of the next section. Moreover, we get the following estimation for $\operatorname{reg}_{t}(S / I)$.

Corollary 4.4. Let x_{n}, \ldots, x_{n-t} be a filter-regular sequence for S / I. Let g_{i} denote the least common multiple of the minimal generators of $\operatorname{in}(I)$ which are not divided by any of the variables x_{n-i+1}, \ldots, x_{n}. Then

$$
\operatorname{reg}_{t}(S / I) \leq \max \left\{\operatorname{deg} g_{i}-n+i \mid i=0, \ldots, t\right\}
$$

Proof. By Corollary 3.3, the assumption implies that $c_{i}(I)<\infty$ for $i=0, \ldots, t$. Thus, combining Theorem 3.4 and Lemma 4.2 we get

$$
\operatorname{reg}_{t}(S / I) \leq \max \left\{|a| \mid a \in F_{i}, i=0, \ldots, t\right\}
$$

It is easily seen from the definition of F_{i} that $\max _{a \in F_{i}}|a| \leq \operatorname{deg} g_{i}-n+i, i=$ $0, \ldots, t$, hence the conclusion.

Remark. Bruns and Herzog BH, Theorem 3.1(a)], resp. Hoa and Trung [HT, Theorem 3.1], proved that for any monomial ideal I, $\operatorname{reg}(S / I) \leq \operatorname{deg} f-1$, resp. $\operatorname{deg} f-\operatorname{ht} I$, where f is the least common multiple of the minimal generators of I. Note that the mentioned result of Bruns and Herzog is valid for multigraded modules.

5. The case of projective curves

Let $I_{C} \subset k\left[x_{1}, \ldots, x_{n}\right]$ be the defining saturated ideal of a (not necessarily reduced) projective curve $C \subset \mathbb{P}^{n-1}, n \geq 3$. We will assume that $k\left[x_{n-1}, x_{n}\right] \hookrightarrow S / I_{C}$ is a Noether normalization of S / I_{C}. In this case, Theorem 3.6 can be reformulated as follows.

Proposition 5.1. $\operatorname{reg}\left(S / I_{C}\right)=\max \left\{c_{1}\left(I_{C}\right), r\left(I_{C}\right)\right\}$.
Proof. By the above assumption S / I_{C} is a generalized Cohen-Macaulay ring of positive depth and x_{n}, x_{n-1} is a homogeneous system of parameters for S / I_{C}. Therefore, x_{n}, x_{n-1} is a filter-regular sequence for S / I_{C}. In particular, x_{n} is a non-zerodivisor in S / I_{C}. By Lemma [3.2, $c_{0}\left(I_{C}\right)=-\infty$. Hence the conclusion follows from Theorem 3.6

Since S / I_{C} has positive depth, the graded minimal free resolution of S / I_{C} ends at most at the $(n-1)$ th place:

$$
0 \longrightarrow F_{n-1} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow S / I_{C} \longrightarrow 0
$$

From Theorem 3.4 we obtain the following information on the shifts of F_{n-1}. Note that $F_{n-1}=0$ if S / I_{C} is a Cohen-Macaulay ring or, in other words, if C is an arithmetically Cohen-Macaulay curve.

Proposition 5.2. If C is not an arithmetically Cohen-Macaulay curve, $c_{1}\left(I_{C}\right)+$ $n-1$ is the maximum degree of the generators of F_{n-1}.

Proof. Let b_{n-1} be the maximum degree of the generators of F_{n-1}. As we have seen in the introduction, $b_{n-1}-n+1=(n-1)-\operatorname{reg}\left(S / I_{C}\right)=\operatorname{reg}_{1}\left(S / I_{C}\right)$. By Theorem 3.4, $\operatorname{reg}_{1}\left(S / I_{C}\right)=\max \left\{c_{0}\left(I_{C}\right), c_{1}\left(I_{C}\right)\right\}=c_{1}\left(I_{C}\right)$ because $c_{0}\left(I_{C}\right)=-\infty$. So we obtain $b_{n-1}=c_{1}\left(I_{C}\right)+n-1$.

Now we shall see that Proposition 5.1 contains all main results of Bermejo and Gimenez in BG]. It should be noted that they did not use strong results such as Theorem 2.4. We follow the notations of [BG].

Let $E:=\left\{a \in \mathbb{N}^{n-2} \mid x^{a} \in \operatorname{in}\left(I_{C}\right)\right\}$ and denote by $H(E)$ the smallest integer r such that $a \in E$ if $|a|=r$.

Corollary 5.3 ([|BG, Theorem 2.4]). Assume that C is an arithmetically CohenMacaulay curve. Then $\operatorname{reg}\left(S / I_{C}\right)=H(E)-1$.

Proof. Since x_{n}, x_{n-1} is a regular sequence in S / I_{C}, we have $c_{1}\left(I_{C}\right)=-\infty$ by Corollary 3.2. By Proposition 5.1 this implies reg $\left(S / I_{C}\right)=r\left(I_{C}\right)$. But

$$
r\left(I_{C}\right)=\sup \left\{r \mid\left(S_{2} / J_{2}\right)_{r} \neq 0\right\}=H(E)-1
$$

because J_{2} is generated by the monomials $x^{a}, a \in E$.
Let I_{0} be the ideal in S generated by the polynomials obtained from I_{C} by the evaluation $x_{n-1}=x_{n}=0$. Then S / I_{0} is a two-dimensional Cohen-Macaulay ring. Let \tilde{I} denote the ideal in S generated by the monomials obtained from $\operatorname{in}\left(I_{C}\right)$ by the evaluation $x_{n-1}=x_{n}=1$. Let

$$
F:=\left\{a \in \mathbb{N}^{n-2} \mid x^{a} \in \tilde{I} \backslash \operatorname{in}\left(I_{0}\right)\right\}
$$

For every vector $a \in F$ let

$$
E_{a}:=\left\{(\mu, \nu) \in \mathbb{N}^{2} \mid x^{a} x_{n-1}^{\mu} x_{n}^{\nu} \in \operatorname{in}\left(I_{C}\right)\right\} .
$$

Let $\Re:=\bigcup_{a \in F}\left\{a \times\left[\mathbb{N}^{2} \backslash E_{a}\right]\right\}$ and denote by $H(\Re)$ the smallest integer r such that the number of the elements $b \in \Re$ with $|b|=s$ becomes a constant for $s \geq r$.
Corollary $5.4\left([\mathrm{BG}\right.$, Theorem 2.7] $) \cdot \operatorname{reg}\left(S / I_{C}\right)=\max \left\{\operatorname{reg}\left(S / I_{0}\right), H(\Re)\right\}$.
Proof. As in the proof of Corollary 5.3 we have $\operatorname{reg}\left(S / I_{0}\right)=r\left(I_{0}\right)$. But $r\left(I_{0}\right)=$ $r\left(I_{C}\right)$ because in $\left(I_{0}\right)$ is the ideal generated by the monomials obtained from in $\left(I_{C}\right)$ by the evaluation $x_{n-1}=x_{n}=0$. Thus,

$$
\operatorname{reg}\left(S / I_{0}\right)=r\left(I_{C}\right)
$$

It has been observed in $[\mathrm{BG}]$ that the number of the elements $b \in \Re$ with $|b|=s$ is the difference $H_{S / I_{C}}(s)-H_{S / \tilde{I}}(s)=H_{S / \operatorname{in}\left(I_{C}\right)}(s)-H_{S / \tilde{I}}(s)=H_{\tilde{I} / \operatorname{in}\left(I_{C}\right)}(s)$, where $H_{E}(s)$ denotes the Hilbert function of a graded S-module E. Since x_{n} is a nonzerodivisor in $S / \operatorname{in}\left(I_{C}\right), H(\Re)+1$ is the least integer r such that $H_{\left(\tilde{I}, x_{n}\right) /\left(\operatorname{in}\left(I_{C}\right), x_{n}\right)}(s)$
$=0$ for $s \geq r$. On the other hand, since $\operatorname{in}\left(I_{C}\right)$ is generated by monomials which do not contain x_{n} and since J_{1} is the ideal in $k\left[x_{1}, \ldots, x_{n-1}\right]$ obtained from $\operatorname{in}\left(I_{C}\right)$ by the evaluation $x_{n}=0$, we have $\operatorname{in}\left(I_{C}\right)=J_{1} S$ and $\tilde{I}=\tilde{J}_{1} S$, whence $\left(\tilde{I}, x_{n}\right) /\left(\operatorname{in}\left(I_{C}\right), x_{n}\right) \cong \tilde{J}_{1} / J_{1}$. Note that $c_{1}\left(I_{C}\right)=\max \left\{r \mid\left(\tilde{J}_{1} / J_{1}\right)_{r} \neq 0\right\}$ with $c_{1}\left(I_{C}\right)=-\infty$ if $\tilde{J}_{1}=J_{1}$. Then

$$
H(\Re)=\max \left\{0, c_{1}\left(I_{C}\right)\right\}
$$

Thus, applying Proposition5.1 we obtain $\operatorname{reg}\left(S / I_{C}\right)=\max \left\{\operatorname{reg}\left(S / I_{0}\right), H(\Re)\right\}$.
Example. Let $C \subset \mathbb{P}^{3}$ be the monomial curve ($\left.t^{\alpha} s^{\beta}: t^{\beta} s^{\alpha}: s^{\alpha+\beta}: t^{\alpha+\beta}\right), \alpha>$ $\beta>0$, g.c.d. $(\alpha, \beta)=1$. It is known that the defining ideal $I_{C} \subset k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ is generated by the quadric $x_{1} x_{2}-x_{3} x_{4}$ and the forms $x_{1}^{\beta+r} x_{3}^{\alpha-\beta-r}-x_{2}^{\alpha-r} x_{4}^{r}$, $r=0, \ldots, \alpha-\beta$, and that this is a Gröbner basis of I_{C} for the reverse lexicographic order with $x_{1}>x_{2}>x_{3}>x_{4}$ [CM, Théorèm 3.9]. Therefore,

$$
\operatorname{in}\left(I_{C}\right)=\left(x_{1} x_{2}, x_{2}^{\alpha}, x_{1}^{\beta+1} x_{3}^{\alpha-\beta-1}, x_{1}^{\beta+2} x_{3}^{\alpha-\beta-2}, \ldots, x_{1}^{\alpha}\right)
$$

Using the notations of Section 3 we have
$E_{1}=\{(1,1,0),(0, \alpha, 0),(\beta+1,0, \alpha-\beta-1),(\beta+2,0, \alpha-\beta-2), \ldots,(\alpha, 0,0)\}$, $E_{2}=\{(1,1),(0, \alpha),(\alpha, 0)\}$.
From this it follows that

$$
\begin{aligned}
& F_{1}=\{(\beta+1,0, \alpha-\beta-2),(\beta+2,0, \alpha-\beta-3), \ldots,(\alpha-1,0,0)\} \\
& F_{2}=\{(0, \alpha-1),(\alpha-1,0)\}
\end{aligned}
$$

By Proposition 4.2, $c_{1}\left(I_{C}\right)=\alpha-1$ if $\alpha-\beta \geq 2\left(c_{1}\left(I_{C}\right)=-\infty\right.$ if $\left.\alpha-\beta=1\right)$ and $r\left(I_{C}\right)=\alpha-1$ by Proposition4.3. Applying Proposition 5.1 we obtain $\operatorname{reg}\left(S / I_{C}\right)=$ $\alpha-1$.

The direct computation of the invariant $H(\Re)$ is more complicated than that of $c_{1}\left(I_{C}\right)$. First, we should interpret F as the set of the elements of the form $a \in \mathbb{N}^{2}$ such that $a \geq b$ for some elements $b \in p\left(E_{1}\right)$ but $a \nsupseteq c$ for any element $c \in E_{2}$. Then we get

$$
F=\{(\beta+1,0),(\beta+2,0), \ldots,(\alpha-1,0)\}
$$

For all $\varepsilon=\beta+1, \ldots, \alpha-1$ we verify that $E_{(\varepsilon, 0)}=(\alpha-\varepsilon, 0)+\mathbb{N}^{2}$. It follows that

$$
\Re=\left\{(\varepsilon, 0, \mu, \nu) \in \mathbb{N}^{4} \mid \varepsilon=\beta+1, \ldots, \alpha-1 ; \mu \leq \alpha-\varepsilon-1\right\}
$$

If $\alpha-\beta=1$, we have $\Re=\emptyset$, hence $H(\Re)=0$. If $\alpha-\beta \geq 2$, we can check that $H(\Re)=\alpha-1$.

Acknowledgement

The author would like to thank M. Morales for raising his interest in the paper of Bermejo and Gimenez [BG] and L.T. Hoa for useful suggestions.

References

[AH] A. Aramova and J. Herzog, Almost regular sequences and Betti numbers, Amer. J. Math. 122 (2000), no. 4, 689-719. CMP 2000:16
[BCP] D. Bayer, H. Charalambous and S. Popescu, Extremal Betti numbers and applications to monomial ideals, J. Algebra 221 (1999), 497-512. MR 2001a:13020
[BM] D. Bayer and D. Mumford, What can be computed in algebraic geometry? in: D. Eisenbud and L. Robbiano (eds.), Computational Algebraic Geometry and Commutative Algebra, Proceedings, Cortona (1991), Cambridge University Press, 1993, 1-48. MR 95d:13032
[BS] D. Bayer and M. Stillman, A criterion for detecting m-regularity, Invent. Math. 87 (1987), 1-11. MR 87k:13019
[BG] I. Bermejo and P. Gimenez, On the Castelnuovo-Mumford regularity of projective curves, Proc. Amer. Math. Soc. 128 (2000), 1293-1299. MR 2000j:13022
[BH] W. Bruns and J. Herzog, On multigraded resolutions, Math. Proc. Cambridge Phil. Soc. 118 (1995), 245-275. MR 96g:13013
[CM] L. Coudurier and M. Morales, Classification des courbes toriques dans l'espace projectif, module de Rao et liaison, J. Algebra 211 (1999), 524-548. MR 2000a:14036
[EG] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicities, J. Algebra 88 (1984), 89-133. MR 85f:13023
[HT] L.T. Hoa and N.V. Trung, On the Castelnuovo-Mumford regularity and the arithmetic degree of monomial ideals, Math. Z. 229 (1998), 519-537.
[NR] D.G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Phil. Soc. 50 (1954), 145-158. MR 15:596a
[STC] P. Schenzel, N.V. Trung and N.T. Cuong, Über verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57-73. MR 80i:13008
[T1] N.V. Trung, Reduction exponent and degree bounds for the defining equations of a graded ring, Proc. Amer. Math. Soc. 102 (1987), 229-236.
[T2] N.V. Trung, Gröbner bases, local cohomology and reduction number, Proc. Amer. Math. Soc. 129 (2001), 9-18. MR 2001c:13042
[V] W. Vasconcelos, Cohomological degree of a module, in: J. Elias, J.M. Giral, R.M. MiroRoig, S. Zarzuela (eds.), Six Lectures on Commutative Algebra, Progress in Mathematics 166, pp. 345-392, Birkhäuser, 1998. MR 99j:13012

Institute of Mathematics, Box 631, Bò Hô, Hanoi, Vietnam
E-mail address: nvtrung@hn.vnn.vn

[^0]: Received by the editors May 19, 2000 and, in revised form, October 29, 2000.
 1991 Mathematics Subject Classification. Primary 13D02, 13P10.
 Key words and phrases. Castelnuovo-Mumford regularity, reduction number, filter-regular sequence, initial ideal, evaluation.

 The author was partially supported by the National Basic Research Program of Vietnam.

