Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Existence of multiwavelets in $\mathbb{R} ^n$


Authors: Carlos A. Cabrelli and María Luisa Gordillo
Journal: Proc. Amer. Math. Soc. 130 (2002), 1413-1424
MSC (2000): Primary 42C40; Secondary 42C30
DOI: https://doi.org/10.1090/S0002-9939-01-06223-2
Published electronically: October 12, 2001
MathSciNet review: 1879965
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a $q$-regular Multiresolution Analysis of multiplicity $r$ with arbitrary dilation matrix $A$ for a general lattice $\Gamma$ in $\mathbb{R} ^n$, we give necessary and sufficient conditions in terms of the mask and the symbol of the vector scaling function in order that an associated wavelet basis exists. We also show that if $2r(m-1) \geq n$ where $m$ is the absolute value of the determinant of $A$, then these conditions are always met, and therefore an associated wavelet basis of $q$-regular functions always exists. This extends known results to the case of multiwavelets in several variables with an arbitrary dilation matrix $A$ for a lattice $\Gamma$.


References [Enhancements On Off] (What's this?)

  • [Ald97] A. Aldroubi, Oblique and hierarchical multiwavelet bases, Appl. Comput. Harmon. Anal. 4 (1997), no. 3, 231-263. MR 98k:42037
  • [Alp93] B. Alpert, A class of bases in ${L}^2$ for the sparse representation of integral operators, SIAM J. Math. Anal., 24, (1993), no. 1, 246-262. MR 93k:65104
  • [AK97] R. Ashino and M. Kametani, A lemma on matrices and a construction of multi-wavelets, Math. Japan, 45 (1997), 267-287. MR 98c:42025
  • [CHM99] C. Cabrelli, C. Heil and U. Molter, Self-Similarity and Multiwavelets in Higher Dimensions, preprint (1999).
  • [Cal99] A. Calogero, Wavelets on general lattices associated with general expanding maps of $\mathbf R\sp n$, Electron. Res. Announc. Amer. Math. Soc., 5, (1999), 1-10 (electronic). MR 99i:42042
  • [Che97] D.-R. Chen, On the existence and construction of orthonormal wavelets on ${L}^2({\text{$\mathbb{R} $ }}^s)$, Proc. Amer. Math. Soc., 125, (1997), 2883-2889. MR 98h:42030
  • [CDP97] A. Cohen, I. Daubechies and G. Plonka, Regularity of refinable function vectors, J. Fourier Anal. Appl., 3, (1997), no. 3, 295-324. MR 98e:42031
  • [Dau88] I. Daubechies Orthonormal bases of compactly supported wavelets, Comm. Pure and Appl. Math., 41, (1988), 909-996. MR 90m:42039
  • [DS97] L. De Michele and P.-M. Soardi, On multiresolution analysis of multiplicity d, Mh. Math. 124, (1997), 255-272. MR 98k:42039
  • [GHM94] J. Geronimo, D. Hardin, and P. Massopust, Fractal functions and wavelet expansions based on several scaling functions, J. Approx. Theory, 78, (1994), no. 3, 373-401. MR 95h:42033
  • [GLT93] T.N.T. Goodman, S.L. Lee, W.S. Tang, Wavelets in wandering subspaces, Trans. Amer. Math. Soc., 338, (1993), no. 2, 639-654. MR 93j:42017
  • [Gro87] K. Gröchenig, Analyse multiéchelles et bases d'ondelettes, C. R. Acad. Sci. Paris Sér. I Math., 305, (1987), 13-15. MR 88j:47036
  • [GM92] K. Gröchenig and W. Madych, Multiresolution analysis, Haar bases and self-similar tilings, IEEE Trans. Inform. Theory, 38, (1992), 556-568. MR 93i:42001
  • [HC96] C. Heil and D. Colella, Matrix refinement equations: existence and uniqueness, J. Fourier Anal. Appl., 2, (1996), no. 4, 363-377. MR 97k:39021
  • [HSS96] C. Heil, G. Strang and V. Strela, Approximation by translates of refinable functions, Numer. Math., 73, (1996), no. 1, 75-94. MR 97c:65033
  • [Hut81] J. Hutchinson, Fractals and Self-similarity, Indiana Univ. Math. J., 3, (1981), 713-747. MR 82h:49026
  • [JRZ99] R.-Q. Jia, S. Riemenschneider and D.-X. Zhou, Smoothness of multiple refinable functions and multiple wavelets, SIAM J. Matrix Anal. Appl., 21, (1999), no. 1, 1-28 (electronic). MR 2000k:42050
  • [Mal89] S. Mallat Multiresolution approximations and wavelet orthonormal basis of L$^2({R})$ , Trans. Amer. Math. Soc., 315, (1989), 69-87. MR 90e:42046
  • [Mey92] Y. Meyer, Wavelets and Operators, Cambridge University Press, Cambridge, 1992. MR 94f:42001
  • [Pot97] A. Potiopa, A problem of Lagarias and Wang, Master's thesis, Siedlce University, Siedlce, Poland June (1997), (Polish).
  • [Woj97] P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cambridge University Press, 1997. MR 98j:42025

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42C40, 42C30

Retrieve articles in all journals with MSC (2000): 42C40, 42C30


Additional Information

Carlos A. Cabrelli
Affiliation: Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Capital Federal, Argentina, and CONICET, Argentina
Email: cabrelli@dm.uba.ar

María Luisa Gordillo
Affiliation: Departamento de Informática, F.C.E.F.y N., Universidad Nacional de San Juan, Avda. José Ignacio de la Roza y Meglioli (5400) San Juan, Argentina
Email: mluisa@iee.unsj.edu.ar

DOI: https://doi.org/10.1090/S0002-9939-01-06223-2
Keywords: Multiresolution Analysis, dilation matrix, multiwavelets, non-separable wavelets, wavelets
Received by editor(s): June 23, 2000
Received by editor(s) in revised form: November 19, 2000
Published electronically: October 12, 2001
Additional Notes: The research of the authors is partially supported by grants UBACyT TW84, CONICET, PIP456/98 and BID-1201/OC-AR-PICT-03134
Communicated by: David R. Larson
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society