Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hölder estimates of solutions to a degenerate diffusion equation


Author: Yunguang Lu
Journal: Proc. Amer. Math. Soc. 130 (2002), 1339-1343
MSC (2000): Primary 35K55, 35K65, 35D10, 35K15
DOI: https://doi.org/10.1090/S0002-9939-01-06312-2
Published electronically: December 20, 2001
MathSciNet review: 1879955
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the Hölder estimates of weak solutions of the Cauchy problem for the general degenerate parabolic equations

\begin{displaymath}u_{t}= \Delta G(u)+ \sum \limits _{j=1}^{N}f_{j}(u)_{x_{j}}+h(u), \end{displaymath}

with the initial data $u(x,0)=u_{0}(x_1,x_2,\dots,x_N)$, where the diffusion function $G(u)$ can be a constant on a nonzero measure set, such as the equations of two-phase Stefan type. Some explicit Hölder exponents of the composition function $G(u)$ with respect to the space variables are obtained by using the maximum principle.


References [Enhancements On Off] (What's this?)

  • 1. S.B. Angenent and D.G. Aronson, The focusing problem for the radially symmetric porous medium equation, Commun. in P.D.E., 20(1995), 1217-1240. MR 96c:35074
  • 2. H. Brezis and M.G. Crandall, Uniqueness of solution of the initial value problem for $u_{t}- \Delta G(u)=0$, J. Pure Appl. Math., 58(1979), 153-163. MR 80e:35029
  • 3. L.A. Caffarelli and L.C. Evans, Continuity of the temperature in the two-phase Stefan problem, Arch. Rat. Mech. Anal., 83(1983),199-220. MR 84g:35070
  • 4. L.A. Caffarelli, J.L. Vazquez and N.I. Wolanski, Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation, Indiana Univ. Math. Journal, 36(1987), 373-401. MR 88k:35221
  • 5. E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, 1993 MR 94h:35130
  • 6. E. DiBenedetto and V. Vespri, On the Singular Equation $ \beta(u)_{t}= \Delta u$, Arch. Rat. Mech. Anal., 132(1995), 247-309. MR 96m:35179
  • 7. A. Friedman, Partial Differential Equations of Parabolic Type, Englewood Cliffs,N.J.: Prentice-Hall Inc. 1964. MR 31:6062
  • 8. W. Jäger and Y.G. Lu, Global regularity of solutions for general degenerate parabolic equations in 1-D, J. Diff. Equs., 140(1997), 365-377. MR 98j:35112
  • 9. A.S. Kalashnikov, Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations, Russian Math. Surveys, 42, 169-222(1987). MR 88h:35054
  • 10. Y.G. Lu, Hölder Estimates of Solutions of Some Doubly Nonlinear Degenerate Parabolic Equations, Commun. in P.D.E., 24(1999), 895-914. MR 2000c:35105
  • 11. Y.G. Lu, Hölder Estimates of Solutions of Biological Population Equations, Appl. Math. Letters, 13(2000), 123-126. MR 2001b:35182
  • 12. Y.G. Lu and W. Jäger, Regularity of Solutions to Nonlinear Reaction-Diffusion-Convection Equations with Degenerate Diffusion, J. Diff. Equations, 170(2001), No.1, 1-21. MR 2001j:35159
  • 13. Y. G. Lu, Hölder Estimates of Solutions for General Degenerate Parabolic Equation, to appear in Applicable Analysis.
  • 14. Y. G. Lu and L.W. Qian, Regularity of viscosity solutions of a degenerate parabolic equation, to appear in Proc. AMS.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35K55, 35K65, 35D10, 35K15

Retrieve articles in all journals with MSC (2000): 35K55, 35K65, 35D10, 35K15


Additional Information

Yunguang Lu
Affiliation: Departamento de Matemáticas y Estadística, Universidad Nacional de Colombia, Bogotá, Colombia – and – Department of Mathematics, University of Science & Technology of China, Hefei, People’s Republic of China

DOI: https://doi.org/10.1090/S0002-9939-01-06312-2
Keywords: Degenerate parabolic equation, H\"older solution, maximum principle
Received by editor(s): April 12, 2000
Published electronically: December 20, 2001
Communicated by: Suncica Canic
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society