From to

Author:
Norihiko Minami

Journal:
Proc. Amer. Math. Soc. **130** (2002), 1557-1562

MSC (2000):
Primary 55N15, 55N20, 55N22; Secondary 55Q51, 55R35

DOI:
https://doi.org/10.1090/S0002-9939-01-06374-2

Published electronically:
October 12, 2001

MathSciNet review:
1879983

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a space of finite type. Set as usual, and define the mod support of by for Call *sparse* if there is no with

Then we show the relation for any finite type space with being sparse.

As a special case, we have and the main theorem of Ravenel, Wilson and Yagita is also generalized in terms of the mod support.

**1.**J. M. Boardman,*Stable operations in generalized cohomology*, In I. M. James, editor, The Handbook of Algebraic Topology, chapter**14**, 585-686. Elsevier, 1995. MR**97b:55021****2.**J. M. Boardman, D. C. Johnson and W. S. Wilson,*Unstable operations in generalized cohomology*, In I. M. James, editor, The Handbook of Algebraic Topology, chapter**15**, 687-828. Elsevier, 1995. MR**97b:55022****3.**A. K. Bousfield,*On -equivalence of spaces*, Contemp. Math.**239**(1999), 85-89. CMP**2000:03****4.**M. Hovey,*Cohomological Bousfield Classes*, J. Pure Appl. Algebra**103**(1995), 45-59. MR**96g:55008****5.**M. Hovey,*Bousfield localization functors and Hopkins' chromatic splitting conjecture*, Contemp. Math.**181**(1995), 225-250. MR**96m:55010****6.**I. Kriz,*Morava -theory of classifying spaces: some calculations*, Topology**36**(1997), 1247-1273. MR**99a:55016****7.**I. Kriz and K. P. Lee,*Odd-degree elements in the Morava -cohomology of finite groups*, Topology Appl.**103**(2000), 229-241. MR**2001f:55008****8.**N. Minami,*On the chromatic tower*, in preparation.**9.**D. C. Ravenel, W. S. Wilson and N. Yagita,*Brown-Peterson Cohomology from Morava -Theory*, K-Theory**15**(1998), 147-199. MR**2000d:55012****10.**W. S. Wilson,*equivalence implies equivalence*, Contemp. Math.**239**(1999), 375-376. MR**2000i:55021****11.**N. Yagita,*The exact functor theorem for -theory*, Proc. Japan Acad.**52**(1976), 1-3. MR**52:15432****12.**Z. Yosimura,*Projective dimension of Brown-Peterson homology with modulo coefficients*, Osaka J. Math.**13**(1976), 289-309. MR**54:3686**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
55N15,
55N20,
55N22,
55Q51,
55R35

Retrieve articles in all journals with MSC (2000): 55N15, 55N20, 55N22, 55Q51, 55R35

Additional Information

**Norihiko Minami**

Affiliation:
Department of Mathematics, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan

Email:
norihiko@math.kyy.nitech.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-01-06374-2

Keywords:
Morava $K$-theory,
unstable homotopy theory,
classifying space

Received by editor(s):
November 20, 2000

Published electronically:
October 12, 2001

Additional Notes:
This research was partially supported by Grant-in-Aid for Scientific Research No. 11640072, Japan Society for the Promotion of Science

Communicated by:
Ralph Cohen

Article copyright:
© Copyright 2001
American Mathematical Society