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A UNIQUENESS RESULT FOR HARMONIC FUNCTIONS
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(Communicated by Claudia M. Neuhauser)

Abstract. Let d ≥ 2, D = Rd × (0,∞), and suppose u is harmonic in D

and C2 on the closure of D. If the gradient of u vanishes continuously on
a subset of ∂D of positive d-dimensional Lebesgue measure and u satisfies
certain regularity conditions, then u must be identically constant.

Suppose d ≥ 2, D = {(x1, . . . , xd, xd+1) : xd+1 > 0}, and u is a function that is
harmonic on D. Suppose both u and its gradient vanish continuously on a subset
of ∂D of positive d-dimensional Lebesgue measure.

What further conditions on u are necessary to guarantee that u is identically
zero?

This question dates back to at least the 1950s and is apparently due to L. Bers.
An answer to the above question may be viewed as a higher-dimensional analog to
Privalov’s uniqueness theorem. Under suitable further conditions on u, it may also
be considered a problem in unique continuation.

That further conditions on u are necessary may be seen from a result of Bourgain
and Wolff [6]. They showed that there exists α ∈ (0, 1) and a harmonic function u
that is C1+α on D such that both u and ∇u vanish continuously on a subset of ∂D
of positive Lebesgue measure.

On the positive side, previous results that give sufficient conditions for u to be
identically zero have fallen into two categories. One includes strong assumptions
on the behavior of u in a neighborhood of a single point in ∂D; see [3], [11], [12],
[13]. The other category of papers assumes that u is identically 0 in a relatively
open set in ∂D (here D may be a less regular domain than a half space) and that
the gradient vanishes continuously in a subset of that open set of positive measure;
see [1], [2], [7], [9], [10].

In this paper we give a new and quite different sufficient condition on u. As
far as we have been able to tell, this is the first sufficient condition given only in
terms of the behavior of u and its derivatives on a set of positive Lebesgue measure.
Let ui, uij denote the first and second partial derivatives of u, respectively. For
a nonnegative definite matrix a, let λ1(a) denote the largest eigenvalue of a. We
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define the matrices a(z), ã(z) by

aij(z) =
d+1∑
k=1

uik(z)ukj(z), i, j = 1, . . . , d+ 1,

ã(z) = λ1(a(z))−1a(z).

The matrix ã is initially defined only when a(z) 6= 0.

Theorem 1. Suppose u is C2 on D and nonconstant. Then there does not exist a
subset A of ∂D of positive d-dimensional Lebesgue measure such that :

(i) ã(z) has a continuous extension to A (we denote the extension by ã also);
(ii) ã(z) is of rank at least three for all z ∈ A;
(iii) ∇u vanishes continuously on A.

We make a few remarks:
(1) We do not assume that u also vanishes on A.
(2) We show in Proposition 3 that if a(z) is not zero, then it must be at least of

rank 2. Our theorem does not settle what happens when a(z) is of rank two almost
everywhere that ∇u vanishes.

(3) Our conditions are those of continuity and nondegeneracy in terms of ã(z).
This is natural from the following point of view. Let Wt be a (d + 1)-dimensional
Brownian motion in D and let Ut = (u1(Wt), . . . , ud+1(Wt)). It is easy to see that
the question of whether there can exist a set A satisfying the properties of Theorem
1 when u is nonconstant is equivalent to whether the diffusion Ut can hit zero. The
behavior of Ut is completely determined by the coefficients aij(Wt). The matrix
ã describes and governs the behavior of a certain time change of Ut. If this time
change of Ut never hits zero, then Ut cannot hit zero either.

(4) It is possible for diffusions in two dimensions with continuous diffusion coef-
ficients to hit 0. It is also possible for diffusions in three and more dimensions with
discontinuous coefficients to hit 0. So the conditions on ã might not be too much
stronger than what is necessary.

(5) Our technique is probabilistic.

Proposition 2. Suppose x0 > 0 and

Xt = x0 +
∫ t

0

As dWs +
∫ t

0

Bs
Xs

ds,

where Wt is a standard one-dimensional Brownian motion, As and Bs are adapted
to the σ-fields generated by W , and the second term on the right is the stochastic
integral of Itô. If Bt ≥ 1

2A
2
t for all t almost surely, then with probability one Xt

never hits the point 0.

Proof. Let Mt =
∫ t

0
As dWs, so that 〈M〉t =

∫ t
0
A2
s ds. Let us first suppose that

〈M〉t → ∞ a.s. as t → ∞. Let τt = inf{s : 〈M〉s > t}, Yt = Xτt , Nt = Mτt, and
Ct = Bτt . It is well known that this time change makes Nt a continuous martingale
with 〈N〉t = t, and by Lévy’s theorem ([4], p. 50), Nt is a Brownian motion. So

Yt = x0 + Nt +
∫ t

0

Cs
Ys

ds.
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Moreover ∫ τt

0

Bs
Xs

ds =
∫ t

0

Bτu
A2
τuXτu

du,

so

Cs =
Bτs
A2
τs

≥ 1
2
.

Let ε > 0. Let Zt be a Bessel process of index 2 started at x0 and driven by the
Brownian motion Nt, which means that

Zt = x0 +Nt +
∫ t

0

1
2Zs

ds.

Let f(x) be a C2 function that equals 1/x for x > ε and let Ỹt and Z̃t be processes
satisfying

Ỹt = x0 +Nt +
∫ t

0

Csf(Ỹs) ds,

Z̃t = x0 +Nt +
∫ t

0

1
2
f(Z̃s) ds.

Clearly Yt = Ỹt and Zt = Z̃t up until the time each first hits ε. By a stochastic
comparison theorem ([8], Theorem VI.1.1), Ỹt ≥ Z̃t for t less than the first time Z̃t
hits ε. So Yt ≥ Zt up until the first time Zt hits ε. Letting ε → 0 and using the
fact that Zt never hits 0 ([5], Proposition I.7.2), we see that Yt also never hits 0.
Since Xt is a time change of Yt, then Xt never hits 0 either.

If 〈M〉t does not tend to ∞ as t → ∞, then we have the same formula for Y ,
except that Nt is now a Brownian motion stopped at a stopping time, and neither
Nt nor Yt changes after that stopping time. Just as above, Xt does not hit 0 in
this case either.

The following proposition is of interest, but is not needed for the proof of Theo-
rem 1.

Proposition 3. If a is not identically 0, then a has rank at least two.

Proof. Define the matrix σij(x) = uij(x). Since u is harmonic, then trace (σ) = 0.
σ is symmetric because u is C2. Note a = σ2. Let µ1, µ2, · · · be the eigenvalues
of σ, arranged in decreasing order of absolute value. Since trace (σ) = 0, then
µ1 + · · ·+ µd+1 = 0. µ1 cannot be 0 if a 6= 0. Then at least one of µ2, µ3, . . . , µd+1

must be greater than |µ1|/d in absolute value. This implies that σ is at least of
rank two, and hence a is also.

For x ∈ Rd, let Gh(x) = {z′ = (x′, y′) : x′ ∈ Rd, 0 < y′ < h, |x − x′| < y′}. Let
Wt be a Brownian motion in Rd+1. For any Borel set F , let τF = inf{t : Wt /∈ F},
the first exit time of a Wt from F .

Proposition 4. Let h>0. Suppose B is a subset of ∂D with positive d-dimensional
Lebesgue measure and with diam (B) < h. Let E =

⋃
x∈B Gh(x). If z ∈ E, then

Pz(τD = τE) > 0.
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Proof. We need to prove that starting in E there is positive probability that Wt

exits E by hitting B. Let H(z) = Pz(WτD ∈ B). If z′ = (x′, y′) with x′ ∈ Rd and
y′ > 0, then by the formula for the Poisson kernel,

Pz
′
(|WτD − x′| < y′) = c1

∫
B(x′,y′)

y′

((y′)2 + |x′ − x|2)(d+1)/2
dx ≥ δ,

where δ is independent of z′. So if z′ ∈ ∂E − ∂D with y′ < h, there is probability
at least δ that, starting at z′, the Brownian motion Wt will exit D in {x ∈ ∂D :
|x− x′| < y′} ⊂ ∂D−B, and thus H(z′) ≤ 1− δ. Since diam (B) < h, there exists
x0 ∈ ∂D such that B ⊂ B(x0, h/2), where B(x0, h/2) is the ball in ∂D centered
at x0 with radius h/2. Hence E ⊂ B(x0, 3h/2) × (0, h). If z′ = (x′, h), clearly
there is positive probability bounded away from 0 that starting at z′ the Brownian
motion will exit D in ∂D − B(x0, 3h/2). Making δ smaller if necessary, we thus
have H(z′) ≤ 1− δ whenever z′ ∈ ∂E − ∂D.

We are given that H is harmonic in D, so by Doob’s optional stopping theorem
and the strong Markov property, if z ∈ E,

H(z) = E zH(WτD∧τE ) = E z[H(WτE ); τE < τD] + E z[H(WτD ); τE = τD]

≤ (1− δ)Pz(τE < τD) + Pz(τD = τE)

= 1− δPz(τE < τD).

By Fatou’s theorem, H(z) → 1 as z tends to x within E for almost every point
x ∈ B. So there exists z0 ∈ E and a neighborhood S of z0 such that S ⊂ E and
H ≥ 1 − δ/2 in S. This implies that Pz(τE < τD) ≤ 1

2 for z ∈ S. By the support
theorem, starting at any point in E there is positive probability of hitting S before
exiting E; this and the strong Markov property imply the proposition.

Proof of Theorem 1. We consider the space of (d+ 1)× (d+ 1) matrices with norm
given by ‖b‖ = sup‖x‖2≤1 ‖bx‖2, where ‖x‖2 is the `2 norm on Rd+1. Suppose b is
a nonnegative definite matrix whose largest eigenvalue is 1 and has rank at least
3. There is an orthogonal matrix p such that ptbp is a diagonal matrix with the
first diagonal entry equal to 1 and the next two diagonal entries positive. We can
then find an invertible matrix q such that qtbq is a diagonal matrix with the first
three diagonal entries equal to one and all the other diagonal entries less than or
equal to 1 in absolute value. Note that trace (qtbq) ≥ 3. By continuity, there is a
neighborhood of the matrix b such that if c is a nonnegative definite matrix in this
neighborhood of b, then

trace (qtcq) ≥ 2λ1(c).(1)

We can find a countable number of nonnegative definite matrices bi of rank at
least three with neighborhoods Vi and invertible matrices qi such that the collection
{Vi} covers the set of nonnegative definite matrices of rank at least 3 and if c ∈ Vi,
then (1) holds with q replaced by qi.

Suppose u satisfies the hypotheses of Theorem 1 and u is nonconstant. Let
Ai = {x ∈ A : ã(x) ∈ Vi}. Since A has positive measure, there exists i such
that Ai has positive measure. We have that ã extends continuously to ∂D and the
eigenvalues of a matrix are continuous functions of the coefficients, so there exists
a set B ⊂ Ai of positive measure and h > 0 such that ã(z) ∈ Vi whenever x ∈ B
and z ∈ Gh(x). Without loss of generality we may assume that diam (B) < h. Let
E =

⋃
x∈B Gh(x) and pick a point z0 ∈ E.
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By Proposition 4 there is positive probability that started at z0, a Brownian mo-
tionWt will remain in E up until τD. Define a process Ut = (u1(Wt), . . . , ud+1(Wt)).
Since there is positive probability that Wt stays in E until hitting ∂D, there is pos-
itive probability that WτD is in B and thus positive probability that UτD = 0. We
will show that Ut can never hit 0 before leaving E, which leads to a contradiction,
and hence to the conclusion that u must be constant.

Each ui is harmonic, so ∆ui = 0, and by Ito’s formula,

ui(Wt) = ui(W0) +
d+1∑
j=1

∫ t

0

uij(Ws) dW j
s .

Therefore each component of Ut is a continuous martingale and the quadratic vari-
ations are given by

〈U i, U j〉t =
d+1∑
k=1

∫ t

0

uik(Ws)ujk(Ws) ds =
∫ t

0

aij(Ws) ds.

Note that we have here aij(Ws) and not aij(Us); with the latter a much more
delicate analysis would be possible.

For t < τE we have ã ∈ Vi. Let Ht = qtiUt∧τE . Clearly it is possible for Ut to
hit 0 while Wt is in B only if Ht ever hits 0. Let c = qtiaqi. It is easy to see that
〈H i, Hj〉t =

∫ t∧τE
0 qtiaqi(Ws) ds. A straightforward calculation using Ito’s formula

with the function f(x) = |x| (cf. [5], Proposition V.2.1) shows that if It = |Ht|,
then

It = Mt +
1
2

∫ t∧τE

0

trace (c(Ws))−
∑d+1

i,j=1 H
i
scij(Ws)Hj

s/I
2
s

Is
ds,

where

〈M〉t =
∫ t∧τE

0

d+1∑
i,j=1

Hi
scij(Ws)Hj

s

I2
s

ds.

This means there is a one-dimensional Brownian motion Ŵt such that Mt =∫ t∧τE
0 As dŴs with As = (

∑d+1
i,j=1(Hi

scij(Ws)Hj
s )/I2

s )1/2. For t < τE we have
ã(Wt) ∈ Vi, and hence

trace (c(Wt)) ≥ 2λ1(c(Wt)) ≥ 2
d+1∑
i,j=1

Hi
tcij(Wt)H

j
t

I2
t

.

We now apply Proposition 2 and conclude that Ut never hits 0, our contradiction.
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