On one problem of uniqueness of meromorphic functions concerning small functions
Author:
HongXun Yi
Journal:
Proc. Amer. Math. Soc. 130 (2002), 16891697
MSC (2000):
Primary 30D35; Secondary 30D30
Published electronically:
October 17, 2001
MathSciNet review:
1887016
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper, we show that if two nonconstant meromorphic functions and satisfy for , where are five distinct small functions with respect to and , and is a positive integer or with , then . As a special case this also answers the longstanding problem on uniqueness of meromorphic functions concerning small functions.
 1.
W.
K. Hayman, Meromorphic functions, Oxford Mathematical
Monographs, Clarendon Press, Oxford, 1964. MR 0164038
(29 #1337)
 2.
Katsuya
Ishizaki and Nobushige
Toda, Unicity theorems for meromorphic functions sharing four small
functions, Kodai Math. J. 21 (1998), no. 3,
350–371. MR 1664754
(99k:30050), http://dx.doi.org/10.2996/kmj/1138043945
 3.
Bao
Qin Li, Uniqueness of entire functions sharing four small
functions, Amer. J. Math. 119 (1997), no. 4,
841–858. MR 1465071
(98m:32001)
 4.
Yu
Hua Li, Entire functions that share four functions IM, Acta
Math. Sinica (Chin. Ser.) 41 (1998), no. 2,
249–260 (Chinese, with English and Chinese summaries). MR 1656489
(99j:30034)
 5.
Y. H. Li, Meromorphic functions which share four or five small functions, J. Math. Res. Exp. 20 (2000), 9496.
 6.
Yuhua
Li and Jianyong
Qiao, The uniqueness of meromorphic functions concerning small
functions, Sci. China Ser. A 43 (2000), no. 6,
581–590. MR 1775265
(2001f:30037), http://dx.doi.org/10.1007/BF02908769
 7.
Rolf
Nevanlinna, Le théorème de PicardBorel et la
théorie des fonctions méromorphes, Chelsea Publishing
Co., New York, 1974 (French). Reprinting of the 1929 original. MR 0417418
(54 #5468)
 8.
Manabu
Shirosaki, An extension of unicity theorem for meromorphic
functions, Tohoku Math. J. (2) 45 (1993), no. 4,
491–497. MR 1245716
(94k:30076), http://dx.doi.org/10.2748/tmj/1178225843
 9.
N. Toda, Some generalizations of the unicity theorem of Nevanlinna, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 6165. MR 94d:3D056
 10.
H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Pure and Applied Math. Monographs No. 32, Science Press, Beijing, 1995.
 11.
Qing
De Zhang, A uniqueness theorem for meromorphic functions with
respect to slowly growing functions, Acta Math. Sinica
36 (1993), no. 6, 826–833 (Chinese, with
Chinese summary). MR 1270289
(95f:30047)
 1.
 W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964. MR 29:1337
 2.
 K. Ishizaki and N. Toda, Unicity theorems for meromorphic functions sharing four small functions, Kodai Math. J. 21 (1998), 350371. MR 99k:30050
 3.
 B. Q. Li, Uniqueness of entire functions sharing four small functions, Amer. J. Math. 119 (1997), 841858. MR 98m:32001
 4.
 Y. H. Li, Entire functions share four finite small functions IM, Acta Math. Sinica 41 (1998), 249260. MR 99j:30034
 5.
 Y. H. Li, Meromorphic functions which share four or five small functions, J. Math. Res. Exp. 20 (2000), 9496.
 6.
 Y. H. Li and J. Y. Qiao, The uniqueness of meromorphic functions concerning small functions, Science in China Ser. (A) 43 (2000), 581590.MR 2001f:30037
 7.
 R. Nevanlinna, Le théoréme de PicardBorel et la thèorie des fonctions méromorphes, GauthierVillars, Paris, 1929; reprint, Chelsea, 1974. MR 54:5468
 8.
 M. Shirosaki, An extension of unicity theorem for meromorphic functions, Tohoku Math. J. 45 (1993), 491497. MR 94k:30076
 9.
 N. Toda, Some generalizations of the unicity theorem of Nevanlinna, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 6165. MR 94d:3D056
 10.
 H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Pure and Applied Math. Monographs No. 32, Science Press, Beijing, 1995.
 11.
 Q. D. Zhang, A uniqueness theorem for meromorphic functions with respect to slowly growing functions, Acta Math. Sinica 36 (1993), 826833.MR 95f:30047
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
30D35,
30D30
Retrieve articles in all journals
with MSC (2000):
30D35,
30D30
Additional Information
HongXun Yi
Affiliation:
Department of Mathematics, Shandong University, Jinan 250100, People’s Republic of China
Email:
hxyi@sdu.edu.cn
DOI:
http://dx.doi.org/10.1090/S0002993901062451
PII:
S 00029939(01)062451
Keywords:
Meromorphic function,
small function,
uniqueness theorem
Received by editor(s):
September 22, 2000
Received by editor(s) in revised form:
December 1, 2000
Published electronically:
October 17, 2001
Additional Notes:
This work was supported by the NSFC (NO. 19871050) and the RFDP (No. 98042209).
Communicated by:
Juha M. Heinonen
Article copyright:
© Copyright 2001
American Mathematical Society
