INDEX OF B-FREDHOLM OPERATORS
AND GENERALIZATION OF A WEYL THEOREM

M. BERKANI

(Communicated by Joseph A. Ball)

Abstract. The aim of this paper is to show that if S and T are commuting
B-Fredholm operators acting on a Banach space X, then ST is a B-Fredholm
operator and $\text{ind}(ST) = \text{ind}(S) + \text{ind}(T)$, where ind means the index. Moreover
if T is a B-Fredholm operator and F is a finite rank operator, then $T + F$
is a B-Fredholm operator and $\text{ind}(T + F) = \text{ind}(T)$. We also show that if 0
is isolated in the spectrum of T, then T is a B-Fredholm operator of index 0 if
and only if T is Drazin invertible. In the case of a normal bounded linear operator
T acting on a Hilbert space H, we obtain a generalization of a classical
Weyl theorem.

1. Introduction

This paper is a continuation of our previous works [2], [3], [4], [5]. We consider a
Banach space X and $L(X)$ the Banach algebra of bounded linear operators acting
on X. For $T \in L(X)$ we will denote by $N(T)$ the null space of T, by $\alpha(T)$
the nullity of T, by $R(T)$ the range of T and by $\beta(T)$ its defect. If the range $R(T)$ of T is
closed and $\alpha(T) < \infty$ (resp. $\beta(T) < \infty$), then T is called an upper semi-Fredholm
(resp. a lower semi-Fredholm) operator. A semi-Fredholm operator is an upper or
a lower semi-Fredholm operator. If both $\alpha(T)$ and $\beta(T)$ are finite, then T is called
a Fredholm operator and the index of T is defined by $\text{ind}(T) = \alpha(T) - \beta(T)$.

Now for a bounded linear operator T and for each integer n, define T_n to be the
restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into $R(T^n)$ (in particular
$T_0 = T$). If for some integer n the range space $R(T^n)$ is closed and T_n is a Fredholm
(resp. semi-Fredholm) operator, then T is called a B-Fredholm operator (resp. a
semi-B-Fredholm) operator. In this case and from [2] Proposition 2.1 T_m is a
Fredholm operator and $\text{ind}(T_m) = \text{ind}(T_n)$ for each $m \geq n$. This enables us to
define the index of a B-Fredholm operator T as the index of the Fredholm operator
T_n where n is any integer such that $R(T^n)$ is closed and T_n is a Fredholm operator.
Let $\text{BF}(X)$ be the class of all B-Fredholm operators. In [2] the author has studied
this class of operators and has proved [2] Theorem 2.7 that an operator $T \in L(X)$
is a B-Fredholm operator if and only if $T = T_0 \oplus T_1$, where T_0 is a Fredholm operator
and T_1 is a nilpotent one.

The aim of this paper is to study the properties of the index of B-Fredholm
operators and to derive a generalization of a classical Weyl theorem.
It appears that the concept of Drazin invertibility plays an important role for the class of B-Fredholm operators. Let \(A \) be an algebra with a unit. Following \cite{14} we say that an element \(x \) of \(A \) is Drazin invertible of degree \(k \) if there is an element \(b \) of \(A \) such that

\[
x^k bx = x^k, bxb = b, xb = bx.
\]

(1)

Recall that the concept of Drazin invertibility was originally considered by M. P. Drazin in \cite{6} where elements satisfying relation (1) are called pseudo-invertible elements. The Drazin spectrum is defined by \(\sigma_D(a) = \{ \lambda \in \mathbb{C} : a - \lambda I \text{ is not Drazin invertible} \} \) for every \(a \in A \). In the case of a Banach algebra \(A \) and from \cite{5} Theorem 2.3] we know that the Drazin spectrum satisfies the spectral mapping theorem.

In the case of a bounded linear operator \(T \) acting on a Banach space \(X \), it is well known that \(T \) is Drazin invertible if and only if it has a finite ascent and descent (Definition 2.1), which is also equivalent to the fact that \(T = T_0 \oplus T_1 \), where \(T_0 \) is an invertible operator and \(T_1 \) is a nilpotent one. (See \cite{14} Proposition 6 and \cite{12} Corollary 2.2.) In \cite{5} Theorem 3.4] we have shown that a bounded linear operator \(T \) acting on a Banach space \(X \) is a B-Fredholm operator if and only if its projection in the algebra \(L(X)/F_0(X) \) is Drazin invertible, where \(F_0(X) \) is the ideal of finite rank operators in the algebra \(L(X) \). This characterization of B-Fredholm operators shows easily that the class of B-Fredholm operators is stable under finite rank perturbation and the product of two commuting B-Fredholm operators is a B-Fredholm operator \cite{5} Corollary 3.5].

After giving some preliminaries in the second section, we prove in the third section that if \(S, T \) are two commuting B-Fredholm operators, then the product \(ST \) is a B-Fredholm operator and \(\text{ind}(ST) = \text{ind}(S) + \text{ind}(T) \). Moreover if \(T \) is a B-Fredholm operator and \(F \) is a finite rank operator, then \(T + F \) is a B-Fredholm operator and \(\text{ind}(T + F) = \text{ind}(T) \). Those two results give a positive answer to two open questions of \cite{5}. We also show that if 0 is isolated in the spectrum of \(T \), then \(T \) is a B-Fredholm operator of index 0 if and only if \(T \) is Drazin invertible. Then we define B-Weyl operators and the B-Weyl spectrum as follows:

Definition 1.1. Let \(T \in L(X) \). Then \(T \) is called a B-Weyl operator if it is a B-Fredholm operator of index 0.

The B-Weyl spectrum \(\sigma_{BW}(T) \) of \(T \) is defined by \(\sigma_{BW}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not a B-Weyl operator} \} \).

In Theorem 4.3 we show that for \(T \in L(X) \) we have

\[
\sigma_{BW}(T) = \bigcap_{F \in F_0(X)} \sigma_D(T + F),
\]

and in the case a normal operator \(T \) acting on a Hilbert space \(H \), we show that

\[
\sigma_{BW}(T) = \sigma(T) \setminus E(T),
\]

where \(E(T) \) is the set of isolated eigenvalues of \(T \), which gives a generalization of the classical Weyl theorem. Recall that the classical Weyl theorem \cite{15} asserts that if \(T \) is a normal operator acting on a Hilbert space \(H \), then the Weyl spectrum \(\sigma_W(T) \) is exactly the set of all points in \(\sigma(T) \) except the isolated eigenvalues of finite multiplicity, that is,

\[
\sigma_W(T) = \sigma(T) \setminus \Pi_{00}(T),
\]
where \(\Pi_{\aleph_0}(T) \) is the set of isolated eigenvalues of finite multiplicity and \(\sigma_W(T) \) is the Weyl spectrum of \(T \); that is, \(\sigma_W(T) = \{ \lambda \in \mathbb{C} \text{ such that } T - \lambda I \text{ is not a Fredholm operator of index 0} \} \). It is known from \([8, \text{Theorem 6.5.2}]\) that

\[
\text{ind} T = \bigcap_{F \in F_0(X)} \sigma(T + F).
\]

Henceforth, if \(M \) and \(N \) are two vector spaces, the notation \(M \cong N \) will mean that \(M \) and \(N \) are isomorphic. We also define the infimum of the empty set to be \(\infty \).

2. Preliminaries

Definition 2.1 \([3]\). Let \(T \in L(X) \) and let \(n \in \mathbb{N} \).

i) The sequence \((c_n(T)) \) is defined by \(c_n(T) = \dim R(T^n)/R(T^{n+1}) \), and the descent of \(T \) is defined by \(\delta(T) = \inf \{ n : c_n(T) = 0 \} = \inf \{ n : R(T^n) = R(T^{n+1}) \} \).

ii) The sequence \((c'_n(T)) \) is defined by \(c'_n(T) = \dim N(T^n)/N(T^{n+1}) \), and the ascent \(a(T) \) of \(T \) is defined by

\[
a(T) = \inf \{ n : c'_n(T) = 0 \} = \inf \{ n : N(T^n) = N(T^{n+1}) \}.
\]

iii) The sequence \((k_n(T)) \) is defined by

\[
k_n(T) = \dim (R(T^n) \cap N(T))/(R(T^{n+1}) \cap N(T)).
\]

Definition 2.2 \([11]\). Let \(T \in L(X) \) and let \(\Delta(T) = \{ n \in \mathbb{N} : \forall m \in \mathbb{N} \text{ } m \geq n \Rightarrow (R(T^n) \cap N(T)) \subset (R(T^m) \cap N(T)) \} \). Then the degree of stable iteration \(dis(T) \) of \(T \) is defined as \(dis(T) = \inf \Delta(T) \).

Definition 2.3 \([7]\). Let \(T \in L(X) \) and let \(d \in \mathbb{N} \). Then \(T \) has a uniform descent for \(n \geq d \) if \(R(T^n) + N(T^n) = R(T) + N(T^d) \) for all \(n \geq d \), in other words, if \(k_n(T) = 0 \) \((n \geq d) \).

If in addition \(R(T) + N(T^d) \) is closed, then \(T \) is said to have a topological uniform descent for \(n \geq d \).

Theorem 2.4 \([7, \text{Theorem 4.7}]\). Suppose that \(T \) is a bounded operator with topological uniform descent for \(n \geq d \) on the Banach space \(X \), \(n,d \in \mathbb{N} \), and that \(V \) is a bounded operator that commutes with \(T \). If \(V - T \) is sufficiently small and invertible, then:

(a) \(V \) has closed range and \(k_p(V) = 0 \) for each integer \(p \geq 0 \).

(b) \(c_p(V) = c_d(T) \) for each integer \(p \geq 0 \).

(c) \(c'_p(V) = c'_d(T) \) for each integer \(p \geq 0 \).

Remark A. As it has already been observed in \([2]\) it is immediately seen that a B-Fredholm operator is an operator of topological uniform descent. Using this fact and the properties of operators with topological uniform descent, we have the following properties of the index:

i) If \(S,T \in BF(X), ST = TS \) and \(||T - S|| \) is small, then \(\text{ind}(T) = \text{ind}(S) \).

(See \([7, \text{Theorem 4.6}.] \).)

ii) If \(S,T \in BF(X), ST = TS \) and \(T - S \) is compact, then \(\text{ind}(T) = \text{ind}(S) \).

(See \([7, \text{Theorem 5.8}.] \).)

iii) If \(T \in BF(X), ST = TS, ||T - S|| \) is small and \(T - S \) is invertible, then \(S \) is a Fredholm operator and \(\text{ind}(S) = \text{ind}(T) \).

(See \([7, \text{Theorem 4.7}.] \).) In particular, if \(T \) is a B-Fredholm operator and \(n \) is an integer large enough, then \(T - \frac{1}{n}I \) is a Fredholm operator and \(\text{ind}(T - \frac{1}{n}I) = \text{ind}(T) \).
3. INDEX OF B-FREDHOLM OPERATORS

If \(T \) is a bounded linear operator \(T \) such that both of \(\alpha(T) \) and \(\beta(T) \) are finite, then the range \(R(T) \) of \(T \) is closed and \(T \) is a Fredholm operator. In the following theorem, we prove a similar result for B-Fredholm operators giving a simple characterization of this class of operators.

Theorem 3.1. Let \(T \in L(X) \). Then \(T \) is a B-Fredholm operator if and only if there exists an integer \(n \in \mathbb{N} \) such that \(\alpha(T_n) \) and \(\beta(T_n) \) are finite.

Proof. Suppose that \(T \) is a B-Fredholm operator and let \(d = \text{dis}(T) \). Then from [2 Proposition 2.6] we know that \(R(T^d) \cap N(T) \) is of finite dimension and \(R(T) + N(T^d) \) is of finite codimension. So \(\alpha(T_d) \) and \(\beta(T_d) \) are both finite.

Conversely suppose that \(T \in L(X) \) and there exist \(n \in \mathbb{N} \) such that \(\alpha(T_n) \) and \(\beta(T_n) \) are both finite. Then \(R(T) + N(T^n) \) is of finite codimension and \(N(T) \cap R(T^n) \) is of finite dimension. Since \(N(T) \cap R(T^n) \) is of finite dimension, the sequence \((N(T) \cap R(T^n))_p \) is a stationary sequence for \(p \) large enough. This shows that \(d = \text{dis}(T) \in \mathbb{N} \), \(R(T^d) \cap N(T) \) is of finite dimension and \(R(T) + N(T^d) \) is of finite codimension. From [9 Lemma 3.1] we have \(N(T^{d+1}) \approx N(T) \cap R(T^d) \), and from [9 Lemma 3.2] we have \(\frac{\text{ind}(T^d)}{\text{ind}(T)} \approx \frac{\text{ind}(T)}{\text{ind}(T)} \). It then follows that \(\alpha(T) < \infty \) and \(\beta(T) < \infty \). Since the sequences \((\alpha(T))_p \) and \((\beta(T))_p \) are stationary sequences then for \(p \geq d \), we have \(\alpha(T) < \infty \) and \(\beta(T) < \infty \). Moreover by [9 Lemma 3.1] we have \(\frac{\text{ind}(T^p)}{\text{ind}(T)} \approx \frac{\text{ind}(T)}{\text{ind}(T)} \). Therefore \(N(T^p) \cap R(T^p) \) is of finite dimension and \(R(T^p) + N(T^p) \) is of finite codimension. In particular the two sets are closed. Using the Neubauer lemma [11 Proposition 2.1.1] it follows that \(R(T^p) \) is closed. Hence \(T_d \) is a Fredholm operator and so \(T \in BF(X) \).

Theorem 3.2. Let \(S, T \) be two commuting B-Fredholm operators. Then the product \(ST \) is a B-Fredholm operator and \(\text{ind}(ST) = \text{ind}(S) + \text{ind}(T) \).

Proof. From [5 Corollary 3.5] we know that \(ST \) is a B-Fredholm operator. Moreover there exists an integer \(N_0 \) such that for any integer \(n \geq N_0 \), the operators \(T - \frac{1}{n}I \) and \(S - \frac{1}{n}I \) are both Fredholm operators, \(\text{ind}(T - \frac{1}{n}I) = \text{ind}(T) \) and \(\text{ind}(S - \frac{1}{n}I) = \text{ind}(S) \). Moreover for \(n \geq N_0 \) the difference \(ST - (S - \frac{1}{n}I)(T - \frac{1}{n}I) = \frac{1}{n}(S + T - \frac{1}{n}I) \) is of small norm if the integer \(n \) is chosen large enough. Since \(ST \) and \((S - \frac{1}{n}I)(T - \frac{1}{n}I) \) are B-Fredholm operators, then by the Remark A we have \(\text{ind}(ST) = \text{ind}((S - \frac{1}{n}I)(T - \frac{1}{n}I)) \). Since \(S - \frac{1}{n}I \) and \(T - \frac{1}{n}I \) are both Fredholm operators, then \(\text{ind}((S - \frac{1}{n}I)(T - \frac{1}{n}I)) = \text{ind}(S - \frac{1}{n}I) + \text{ind}(T - \frac{1}{n}I) \). Since \(\text{ind}(S - \frac{1}{n}I) = \text{ind}(S) \) and \(\text{ind}(T - \frac{1}{n}I) = \text{ind}(T) \), then \(\text{ind}(ST) = \text{ind}(S) + \text{ind}(T) \).

Proposition 3.3. Let \(T \in L(X) \) be a B-Fredholm operator and let \(F \) be a finite rank operator. Then \(T + F \) is a B-Fredholm operator and \(\text{ind}(T + F) = \text{ind}(T) \).

Proof. From [3 Corollary 3.10], it follows that \(T + F \) is a B-Fredholm operator. Moreover there exists an integer \(N_0 \) such that for any integer \(n \geq N_0 \), \(T - \frac{1}{n}I \) and \(T + F - \frac{1}{n}I \) are Fredholm operators, \(\text{ind}(T - \frac{1}{n}I) = \text{ind}(T) \) and \(\text{ind}(T + F - \frac{1}{n}I) = \text{ind}(T + F) \). Since \(F \) is a finite rank operator and \(T - \frac{1}{n}I \) is a Fredholm operator, by the usual properties of the index we have \(\text{ind}(T + F - \frac{1}{n}I) = \text{ind}(T - \frac{1}{n}I) \). So \(\text{ind}(T + F) = \text{ind}(T) \).
Remark B. 1) If K is a compact operator such that $R(K^n)$ is not closed for every positive integer n, then K is not a B-Fredholm operator. So if F is a finite rank operator, then F is a B-Fredholm operator, but $K + F$ is not a B-Fredholm operator, otherwise $K = K + F - F$ would be a B-Fredholm operator. Hence the class of B-Fredholm operators is not stable under compact perturbation.

2) Let $T \in L(X)$. It is easily seen that T is a B-Fredholm operator if only if T^* is a B-Fredholm operator. Moreover in this case $\text{ind}(T^*) = -\text{ind}(T)$.

4. B-Fredholm operators of index 0

Lemma 4.1. Let $T \in L(X)$. Then T is a B-Fredholm operator of index 0 if and only if $T = T_0 \oplus T_1$, where T_0 is a Fredholm operator of index 0 and T_1 is a nilpotent operator.

Proof. If T is a B-Fredholm operator of index 0, then $X = X_0 \oplus X_1$, where X_0, X_1 are closed subspaces of X, $T_0 = T|_{X_0}$ is a Fredholm operator and $T_1 = T|_{X_1}$ is a nilpotent operator. Moreover we have $\text{ind}(T) = \text{ind}(T_n)$ for n large enough. Since T_1 is a nilpotent operator, then for n large enough we have $R(T^n) = R(T_0^n)$ and $T_n = (T_0)_n$. From [2] Proposition 1] we have $\text{ind}(T_0) = \text{ind}((T_0)_n)) = \text{ind}(T_n) = \text{ind}(T) = 0$.

Conversely if $X = X_0 \oplus X_1$, $T_0 = T|_{X_0}$ is a Fredholm operator of index 0 and $T_1 = T|_{X_1}$ is a nilpotent operator, then by the same arguments, T is a B-Fredholm operator of index 0.

Theorem 4.2. Let $T \in L(X)$ be such that 0 is isolated in the spectrum $\sigma(T)$ of T. Then T is a B-Fredholm operator of index 0 if and only if T is Drazin invertible.

Proof. If T is a B-Fredholm operator of index 0, then $X = X_0 \oplus X_1$ such that $T_0 = T|_{X_0}$ is a Fredholm operator of index 0 and $T_1 = T|_{X_1}$ is a nilpotent operator. If T_0 is invertible, then T is Drazin invertible. If T_0 is not invertible, as 0 is isolated in the spectrum of T, then it is also isolated in the spectrum of T_0. Since T_0 is a Fredholm operator of index 0, it follows from [1] Proposition 2] that $T_0 = T_0 \oplus T_{01}$, where T_{00} is invertible and T_{01} is a nilpotent operator. So $T = T_0 \oplus T_{01} \oplus T_1$, with T_{00} invertible and $T_{01} \oplus T_1$ nilpotent. This shows that T is Drazin invertible.

Conversely if T is Drazin invertible, then T is of finite ascent and descent. It follows from [12] Theorem 1.2] that there is an integer p such that $a(T) = d(T) = p$ and $X = R(T^p) \oplus N(T^p)$. Let $X_0 = R(T^p)$ and $X_1 = N(T^p)$. Since $T_0 = T|_{X_0}$ is an invertible operator and $T_1 = T|_{X_1}$ is a nilpotent operator, from the precedent proposition it follows that T is a B-Fredholm operator of index 0.

Theorem 4.3. Let $T \in L(X)$. Then $\sigma_{\text{BW}}(T) = \bigcap_{F \in F_0(X)} \sigma_D(T + F)$.

Proof. Let $\lambda \notin \sigma_{\text{BW}}(T)$. Then $T - \lambda I$ is a B-Fredholm operator of index 0. From Lemma 4.1, we have $T - \lambda I = T_0 \oplus T_1$, where T_0 is a Fredholm operator of index 0 and T_1 is a nilpotent operator. From [8] Theorem 6.5.2] there exists a finite rank operator S_0 such that $T_0 + S_0$ is invertible. Set $S = S_0 \oplus 0$; then S is of finite rank and $(T - \lambda I) + S = T_0 + S_0 \oplus T_1$ is Drazin invertible. Hence $\lambda \notin \bigcap_{F \in F_0(X)} \sigma_D(T + F)$.

Conversely if $\lambda \notin \bigcap_{F \in F_0(X)} \sigma_D(T + F)$, then there is a finite rank operator F such that $(T - \lambda I) + F$ is Drazin invertible. From Proposition 3.3, $(T - \lambda I) = (T - \lambda I) + F - F$ is a B-Fredholm operator and $\text{ind}(T - \lambda I) = \text{ind}((T - \lambda I) + F) = 0$, and $\lambda \notin \sigma_{\text{BW}}(T)$.
From this theorem, we immediately obtain the following characterization of B-Weyl operators.

Corollary 4.4. Let \(T \in L(X) \). Then \(T \) is a B-Weyl operator if and only if \(T = S + F \), where \(S \) is Drazin invertible operator and \(F \) is a finite rank operator.

It is known from [13] Theorem 7.7] that if \(\lambda \) is isolated in the spectrum \(\sigma(T) \) of a normal operator \(T \) acting on a Hilbert space \(H \), then \(T - \lambda I \) is Drazin invertible. By the following theorem we give for such an operator, a generalization of a classical Weyl theorem [13].

Theorem 4.5. Let \(T \in L(H) \) be a normal operator. Then \(\sigma_{BW}(T) = \sigma(T) \setminus E(T) \), where \(E(T) \) is the set of isolated eigenvalues of \(T \).

Proof. If \(\lambda \notin \sigma_{BW}(T) \) and \(\lambda \in \sigma(T) \), then \(T - \lambda I \) is a B-Fredholm operator of index 0. Hence there exists an integer \(n \) such that \(R((T - \lambda I)^n) \) is closed. Since \((T - \lambda I)^n \) is a normal operator, then from [13] Theorem VI.3.6],

\[
H = R((T - \lambda I)^n) \oplus N((T - \lambda I)^n).
\]

As \(T - \lambda I \) is a normal operator, then from [13] Theorem VI.3.7], \(N((T - \lambda I)^n) = N((T - \lambda I)) \). Hence \(R((T - \lambda I)) = R((T - \lambda I)^n) \) and \(H = R((T - \lambda I)) \oplus N((T - \lambda I)) \). Since \(\lambda \in \sigma(T) \), then \(N(T - \lambda I) \neq 0 \). It follows that \(\lambda \) is an isolated eigenvalue of \(T \).

Conversely if \(\lambda \in E(T) \), then from [10] Theorem 7.1] we have \(X = X_0 \oplus X_1 \), where \(X_0, X_1 \) are closed subspaces of \(X \), \(T_0 = (T - \lambda I)|_{X_0} \) is an invertible operator and \(T_1 = (T - \lambda I)|_{X_1} \) is a quasi-nilpotent operator. Since \(T \) is a normal operator, then \(T_1 \) is also a normal operator. As \(T_1 \) is quasi-nilpotent, it is a nilpotent operator. Therefore \(T - \lambda I \) is Drazin invertible. From Theorem 2.2 it is a B-Fredholm operator of index 0.

\[\square \]

References

Département de Mathématiques, Faculté des Sciences, Université Mohammed I, Oujda, Maroc
E-mail address: berkani@sciences.univ-oujda.ac.ma