On the dual of Orlicz-Lorentz space

Authors:
H. Hudzik, A. Kaminska and M. Mastylo

Journal:
Proc. Amer. Math. Soc. **130** (2002), 1645-1654

MSC (1991):
Primary 46B10, 46E30

Published electronically:
January 25, 2002

MathSciNet review:
1887011

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A description of the Köthe dual of the Orlicz-Lorentz space generated by an Orlicz function and a regular weight function is presented. It is also shown that in the case of separable Orlicz-Lorentz spaces the regularity condition on is necessary and sufficient for the coincidence of the Banach dual space with the described Köthe dual space.

**1.**G. D. Allen,*Duals of Lorentz spaces*, Pacific J. Math.**77**(1978), no. 2, 287–291. MR**510924****2.**G. D. Allen and L. C. Shen,*On the structure of principal ideals of operators*, Trans. Amer. Math. Soc.**238**(1978), 253–270. MR**0467371**, 10.1090/S0002-9947-1978-0467371-4**3.**Colin Bennett and Robert Sharpley,*Interpolation of operators*, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR**928802****4.**A.-P. Calderón,*Intermediate spaces and interpolation, the complex method*, Studia Math.**24**(1964), 113–190. MR**0167830****5.**Henryk Hudzik, Anna Kamińska, and Mieczysław Mastyło,*Geometric properties of some Calderón-Lozanovskiĭ spaces and Orlicz-Lorentz spaces*, Houston J. Math.**22**(1996), no. 3, 639–663. MR**1417636****6.**Nigel J. Kalton,*Nonlinear commutators in interpolation theory*, Mem. Amer. Math. Soc.**73**(1988), no. 385, iv+85. MR**938889**, 10.1090/memo/0385**7.**Anna Kamińska,*Some remarks on Orlicz-Lorentz spaces*, Math. Nachr.**147**(1990), 29–38. MR**1127306**, 10.1002/mana.19901470104**8.**L. V. Kantorovich and G. P. Akilov,*Funktsionalnyi analiz*, Izdat. “Nauka”, Moscow, 1977 (Russian). Second edition, revised. MR**0511615**

L. V. Kantorovich and G. P. Akilov,*Functional analysis*, 2nd ed., Pergamon Press, Oxford-Elmsford, N.Y., 1982. Translated from the Russian by Howard L. Silcock. MR**664597****9.**S. G. Kreĭn, Yu. Ī. Petunīn, and E. M. Semënov,*Interpolation of linear operators*, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, R.I., 1982. Translated from the Russian by J. Szűcs. MR**649411****10.**G. Ja. Lozanovskiĭ,*Certain Banach lattices. III, IV*, Sibirsk. Mat. Ž.**13**(1972), 1304–1313, 1420; ibid. 14 (1973), 140–155, 237 (Russian). MR**0336314****11.**G. Ya. Lozanovskiĭ,*Transformations of ideal Banach spaces by means of concave functions*, Qualitative and approximate methods for the investigation of operator equations, No. 3 (Russian), Yaroslav. Gos. Univ., Yaroslavl′, 1978, pp. 122–148 (Russian). MR**559326****12.**Shlomo Reisner,*On the duals of Lorentz function and sequence spaces*, Indiana Univ. Math. J.**31**(1982), no. 1, 65–72. MR**642617**, 10.1512/iumj.1982.31.31008**13.**Shlomo Reisner,*On two theorems of Lozanovskiĭ concerning intermediate Banach lattices*, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 67–83. MR**950976**, 10.1007/BFb0081736

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46B10,
46E30

Retrieve articles in all journals with MSC (1991): 46B10, 46E30

Additional Information

**H. Hudzik**

Affiliation:
Faculty of Mathematics and Computer Science, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland and Institute of Mathematics, Poznań University of Technology, Piotrowo 3a, 60-965 Poznań, Poland

Email:
hudzik@amu.edu.pl

**A. Kaminska**

Affiliation:
Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152

Email:
kaminska@memphis.edu

**M. Mastylo**

Affiliation:
Faculty of Mathematics and Computer Science, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

Email:
mastylo@amu.edu.pl

DOI:
https://doi.org/10.1090/S0002-9939-02-05997-X

Received by editor(s):
September 24, 1999

Received by editor(s) in revised form:
April 20, 2000

Published electronically:
January 25, 2002

Additional Notes:
The research of the second and third authors was supported by NATO Collaborative Grant CRG 972918

Communicated by:
Dale Alspach

Article copyright:
© Copyright 2002
American Mathematical Society