Editorial Information

To be published in the Proceedings, a paper must be correct, new, nontrivial, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Proceedings Editors solicit and encourage publication of worthy papers of length not exceeding 10 published pages. Published pages are the same size as those generated in the style files provided for \texttt{AMS-L\LaTeX} or \texttt{AMS-\LaTeX}.

Very short notes not to exceed two printed pages are also accepted, and appear under the heading Shorter Notes. Items deemed suitable include an elegant new proof of an important and well-known theorem, an illuminating example or counterexample, or a new viewpoint on familiar results. New results, if of a brief and striking character, might also be acceptable, though in general a paper which is merely very short will not be suitable for the Shorter Notes department.

As of January 31, 2002, the backlog for this journal was approximately 7 issues. This estimate is the result of dividing the number of manuscripts for this journal in the Providence office that have not yet gone to the printer on the above date by the average number of articles per issue over the previous twelve months, reduced by the number of issues published in four months (the time necessary for editing and composing a typical issue). In an effort to make articles available as quickly as possible, articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send out a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. Two copies of the paper should be sent directly to the appropriate Editor and the author should keep a copy.

IF an editor is agreeable, an electronic manuscript prepared in \LaTeX or \texttt{L\LaTeX} may be submitted by pointing to an appropriate URL on a preprint or e-print server.

The first page of an article must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract should be at least one complete sentence, and at most 150 words. Included with the footnotes to the paper should be the 2000 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from \texttt{www.ams.org/msc/}. The list of classifications is also available in print starting with the 1999 annual index of Mathematical Reviews. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from \texttt{www.ams.org/publications/}. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at \texttt{www.ams.org/mrlookup/}. When the manuscript is submitted, authors should supply the editor with electronic addresses if available. These will be printed after the postal address at the end of each article.

Electronically prepared manuscripts. The AMS encourages electronically prepared manuscripts, with a strong preference for \texttt{AMS-L\LaTeX}. To this end, the Society has prepared \texttt{AMS-L\LaTeX} author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, the \textit{AMS Author Handbook}, samples, and a style file that generates the particular design specifications of that publication.
series. Articles properly prepared using the \texttt{AMS-LaTeX} style file and the \texttt{\label} and \texttt{\ref} commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of \TeX, using \texttt{AMS-LaTeX} also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \texttt{AMS-LaTeX} papers also move more efficiently through the production stream, helping to minimize publishing costs.

\texttt{AMS-LaTeX} is the highly preferred format of \TeX, but author packages are also available in \texttt{AMS-\TeX}. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \LaTeX or plain \TeX are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production system. \LaTeX users will find that \texttt{AMS-LaTeX} is the same as \LaTeX with additional commands to simplify the typesetting of mathematics, and users of plain \TeX should have the foundation for learning \texttt{AMS-LaTeX}.

Authors may retrieve an author package from the AMS website starting from \url{www.ams.org/tex/} or via FTP to \url{ftp.ams.org} (login as \textit{anonymous}, enter username as password, and type \texttt{cd pub/author-info}). The \textit{AMS Author Handbook} and the \textit{Instruction Manual} are available in PDF format following the author packages link from \url{www.ams.org/tex/}. The author package can also be obtained free of charge by sending email to \url{pub@ams.org} (Internet) or from the Publication Division, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When requesting an author package, please specify \texttt{AMS-LaTeX} or \texttt{AMS-\TeX}, Macintosh or IBM (3.5) format, and the publication in which your paper will appear. Please be sure to include your complete mailing address.

At the time of submission, authors should indicate if the paper has been prepared using \texttt{AMS-LaTeX} or \texttt{AMS-\TeX} and provide the Editor with a paper manuscript that matches the electronic manuscript. The final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also send the final version of the paper manuscript to the Editor, who will forward a copy to the Providence office. Editors will require authors to send their electronically prepared manuscripts to the Providence office in a timely fashion. Electronically prepared manuscripts can be sent via email to \url{pub-submit@ams.org} (Internet) or on diskette to the Electronic Prepress Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When sending a manuscript electronically, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to send files are included in the author package.

\textbf{Electronic graphics.} Comprehensive instructions on preparing graphics are available starting from \url{www.ams.org/jourhtml/authors.html}. A few of the major requirements are given here.

Submit files for graphics as \texttt{EPS} (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, \texttt{TIFF} files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator. No matter what method was used to produce the graphic, it is necessary to provide a paper copy to the AMS.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15\% and 85\%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10\%.
AMS policy on making changes to articles after posting. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually posted to the AMS website but not yet in an issue, changes cannot be made in place in the paper. However, an “Added after posting” section may be added to the paper right before the References when there is a critical error in the content of the paper. The “Added after posting” section gives the author an opportunity to correct this type of critical error before the article is put into an issue for printing and before it is then reposted with the issue. The “Added after posting” section remains a permanent part of the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is initially posted.

Once the article is assigned to an issue, even if the issue has not yet been posted to the AMS website, corrections may be made to the paper by submitting a traditional errata article to the Editor. The errata article will appear in a future print issue and will link back and forth on the web to the original article online.

Secure manuscript tracking on the Web and via email. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/ or via email sent to mstrack-query@ams.org. To access by email, on the subject line of the message simply enter the AMS ID and Article ID. To track more than one manuscript by email, choose one of the Article IDs and enter the AMS ID and the Article ID followed by the word all on the subject line. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to proc-query@ams.org.

\TeX\ files available. Beginning with the January 1992 issue of the Bulletin and the January 1996 issues of Transactions, Proceedings, Mathematics of Computation, and the Journal of the AMS, \TeX\ files can be downloaded from the AMS website, starting from www.ams.org/journals/. Authors without Web access may request their files at the address given below after the article has been published. For Bulletin papers published in 1987 through 1991 and for Transactions, Proceedings, Mathematics of Computation, and the Journal of the AMS papers published in 1987 through 1995, \TeX\ files are available upon request for authors without Web access by sending email to file-request@ams.org or by contacting the Electronic Prepress Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. The request should include the title of the paper, the name(s) of the author(s), the name of the publication in which the paper has or will appear, and the volume and issue numbers if known. The \TeX\ file will be sent to the author making the request after the article goes to the printer. If the requestor can receive Internet email, please include the email address to which the file should be sent. Otherwise please indicate a diskette format and postal address to which a disk should be mailed. Note: Because \TeX\ production at the AMS sometimes requires extra fonts and macros that are not yet publicly available, \TeX\ files cannot be guaranteed to run through the author’s version of \TeX\ without errors. The AMS regrets that it cannot provide support to eliminate such errors in the author’s \TeX\ environment.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to proc-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248.
Editors

Authors are requested to send papers directly to the appropriate Editor (the one whose area of responsibility and expertise, as described below, most closely approximates the subject field of the manuscript). Only when in doubt about an appropriate Editor, should manuscripts be sent to the Coordinating Editor responsible for the area in mathematics most closely connected to the paper. If in doubt about the area, send the manuscript to the Managing Editor, to whom all other communication about the journal should also be addressed. (All addresses should include the line “Department of Mathematics”, unless another department is indicated.)

Managing Editor: Eric Bedford, Indiana University, Bloomington, IN 47405-5701; e-mail: bedford@indiana.edu

1. ODE, PDE, GLOBAL ANALYSIS, AND DYNAMICAL SYSTEMS
 Coordinating Editor: Linda Keen, CUNY-Lehman College, Bronx, NY 10468; e-mail: linda@alpha.lehman.cuny.edu; keen@bers.gc.cuny.edu
 Partial differential equations, David S. Tartakoff, University of Illinois at Chicago, Chicago, IL 60607; e-mail: dst@uic.edu
 Dynamical systems and ergodic theory, Michael Handel, Department of Mathematics and Computer Science, Herbert Lehman College (CUNY), Bronx, NY 10468-1589; e-mail: michael@alpha.lehman.cuny.edu
 Ordinary differential equations and special functions, Carmen C. Chicone, University of Missouri, Columbia, MO 65211-0001; e-mail: carmen@chicone.math.missouri.edu
 Global analysis, Jozef Dodziuk, Ph.D. Program in Mathematics, Graduate School and University Center (CUNY), 365 Fifth Avenue, New York, NY 10016-4309; e-mail: jdodziuk@gc.cuny.edu

2. LIE GROUPS, TOPOLOGY, AND GEOMETRY
 Coordinating Editor: Ronald A. Fintushel, Michigan State University, East Lansing, MI 48824-1027; e-mail: ronfint@math.msu.edu
 Topological groups and Lie groups (symmetric spaces), Rebecca Herb, University of Maryland, College Park, MD 20742; e-mail: rah@math.umd.edu
 Riemannian geometry (including affine, pseudo-Riemannian, contact, classical, and Lorentzian geometries), Wolfgang Ziller, University of Pennsylvania, Philadelphia, PA 19104-6317; e-mail: wziller@math.upenn.edu
 Geometric analysis (geometric PDE, minimal surfaces and harmonic maps), Bennett Chow, University of California San Diego, La Jolla, CA 92093; e-mail: benchow@euclid.ucsd.edu
 Algebraic topology, Paul Goerss, Northwestern University, Evanston, IL 60208-2730; e-mail: pgoerss@math.nwu.edu
 Set-theoretic and general topology, Alan Dow, University of North Carolina at Charlotte, Charlotte, NC 28223-0001; e-mail: adow@math.uncc.edu
 Low dimensional topology, gauge theory, 4-manifolds, Ronald A. Fintushel
 Complex and Kähler geometry, Mohan Ramachandran, State University of New York at Buffalo, Buffalo, NY 14260-2900; e-mail: ramac-m@newton.math.buffalo.edu

3. ANALYSIS AND OPERATOR THEORY
 Coordinating Editor: Christopher D. Sogge, Johns Hopkins University, Baltimore, MD 21218; e-mail: sogge@jhu.edu
 One complex variable and potential theory, Juha M. Heinonen, University of Michigan, Ann Arbor, MI 48109-1109; e-mail: PAMS1@math.lsa.umich.edu
 Several complex variables, Mei-Chi Shaw, University of Notre Dame, Notre Dame, IN 46556-0398; e-mail: mei-chi.shaw.1@nd.edu
Linear and nonlinear functional analysis, Jonathan M. Borwein, Department of Mathematics and Statistics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; e-mail: jborwein@cecm.sfu.ca

Banach spaces and linear functional analysis, N. Tomczak-Jaegermann, University of Alberta, Edmonton, AB, Canada T6G 2G1; e-mail: ntomczak@math.ualberta.ca; nicole.tomczak@ualberta.ca

Operator Theory, Joseph A. Ball, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; e-mail: ball@math.vt.edu

Operator algebras and wavelets, David R. Larson, Texas A&M University, College Station, TX 77843-3368; e-mail: larson@math.tamu.edu

Geometric measure theory and classical real analysis, David Preiss, University College London, Gower Street, London WC1E 6BT, UK; e-mail: dp@math.ucl.ac.uk

Harmonic analysis, Andreas Seeger, University of Wisconsin, Madison, WI 53706; e-mail: seeger@math.wisc.edu

Analytic number theory and automorphic forms, Wen-Ching Winnie Li, Pennsylvania State University, University Park, PA 16802-6401; e-mail: wli@math.psu.edu

4. ALGEBRA, NUMBER THEORY, COMBINATORICS, AND LOGIC
Coordinating Editor: Lance W. Small, University of California San Diego, La Jolla, CA 92093-0112; e-mail: lwsmall@ucsd.edu

General number theory, David E. Rohrlich, Boston University, Boston, MA 02215-2411; e-mail: rohrlich@math.bu.edu

Commutative algebra, Bernd Ulrich, Purdue University, West Lafayette, IN 47907-1395; e-mail: ulrich@math.purdue.edu

Group theory, Stephen D. Smith, University of Illinois at Chicago, Chicago, IL 60607; e-mail: smiths@math.uic.edu

Algebraic geometry, Michael Stillman, Cornell University, Malott Hall, Ithaca, NY 14853-4201; e-mail: mike@math.cornell.edu

Combinatorics, John R. Stembridge, University of Michigan, Ann Arbor, MI 48109-1109; e-mail: jrs@math.lsa.umich.edu

Analytic number theory and automorphic forms, Wen-Ching Winnie Li, Pennsylvania State University, University Park, PA 16802-6401; e-mail: wli@math.psu.edu

Logic and foundations, Carl G. Jockusch, Jr., University of Illinois, 1409 W. Green St., Urbana, IL 61801-2917; e-mail: jockusch@math.uiuc.edu

Lie algebras, Dan M. Barbasch, Cornell University, Malott Hall, Ithaca, NY 14853-4201; e-mail: barbasch@math.cornell.edu

Noncommutative rings, Martin Lorenz, Temple University, Philadelphia, PA 19122-6094; e-mail: lorenz@math.temple.edu

5. APPLIED MATHEMATICS, PROBABILITY, AND STATISTICS
Coordinating Editor: Mark J. Ablowitz, Department of Applied Mathematics, Campus Box 526, University of Colorado, Boulder, CO 80309-0526; e-mail: markjab@newton.colorado.edu

Probability, Claudia M. Neuhauser, Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108; e-mail: nhauser@cbs.umn.edu

Statistics, Richard A. Davis, Department of Statistics, Colorado State University, Fort Collins, CO 80523-1877; e-mail: rdavis@stat.colostate.edu
Applied mathematics, David Sharp, Theoretical Division, Los Alamos National Laboratory MSB285, Los Alamos, NM 87545; e-mail: dhs@lanl.gov

Hyperbolic partial differential equations, Suncica Canic, University of Houston, Houston, TX 77204-3476; e-mail: canic@math.uh.edu
(Continued from back cover)

Milutin R. Dostanić, On the distribution singular values of Toeplitz matrices . 1755
Takuya Hosokawa, Keiji Izuchi, and Dechao Zheng, Isolated points and essential components of composition operators on H^∞ 1765
Leonhard Frerick and Dietmar Vogt, Analytic extension of differentiable functions defined in closed sets by means of continuous linear operators . . . 1775
Giorgio Metafune and Diego Pallara, On the location of the essential spectrum of Schrödinger operators 1779
Feng Qi, Logarithmic convexity of extended mean values 1787
J. M. Borwein and J. D. Vanderwerff, On the continuity of biconjugate convex functions 1797

D. GEOMETRY
Bahaa E. Abdalla and Franki Dillen, A Ricci-semi-symmetric hypersurface of Euclidean space which is not semi-symmetric 1805
Kristopher Tapp, Finiteness theorems for submersions and souls 1809

E. LOGIC AND FOUNDATIONS
Robin Hirsch and Ian Hodkinson, Strongly representable atom structures of relation algebras 1819
Jacek Cichoń, Andrzej Jasiński, Anastasis Kamburelis, and Przemysław Szczepaniak, On translations of subsets of the real line 1833

G. TOPOLOGY
Ikumitsu Nagasaki, Linearity of dimension functions for semilinear G-spheres . 1843
Joel Hass, Shicheng Wang, and Qing Zhou, On finiteness of the number of boundary slopes of immersed surfaces in 3-manifolds 1851
E. K. Narayanan and S. K. Ray, L^p version of Hardy’s theorem on semisimple Lie groups 1859
Jerzy Krzempek, Covering maps that are not compositions of covering maps of lesser order 1867

ERRATA
A. V. Arhangel’skii, Erratum to “On condensations of C_p-spaces onto compacta” 1875
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY

CONTENTS

Vol. 130, No. 6 Whole No. 516 June 2002

A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS

Holger P. Petersson and Michel L. Racine, Octonion algebras obtained from associative algebras with involution ... 1563

William Heinzer and Moshe Roitman, The homogeneous spectrum of a graded commutative ring ... 1573

Andreas Blass, Specker's theorem for Nöbeling's group ... 1581

Lynda Danielson and Burton Fein, On the irreducibility of the iterates of $x^n - b$... 1589

Menachem Kojman, Hindman spaces .. 1597

Takeshi Okano, Explicit continued fractions with expected partial quotient growth .. 1603

Louis H. Rowen, Division algebras over C_2- and C_4-fields .. 1607

David M. Arnold, Direct sums of local torsion-free abelian groups ... 1611

Yuguang Fang, A theorem on the k-adic representation of positive integers .. 1619

Hong Bing Yu, Signed sums of polynomial values .. 1623

Yongwei Yao, Primary decomposition: Compatibility, independence and linear growth .. 1629

Tiberiu Dumitrescu and Muhammad Zafrullah, LCM-splitting sets in some ring extensions .. 1639

B. ANALYSIS

H. Hudzik, A. Kamińska, and M. Mastyło, On the dual of Orlicz–Lorentz space .. 1645

David Swanson, A remark on Calderón-Zygmund classes and Sobolev spaces ... 1655

Xingde Dai, Yuinan Diao, and Qing Gu, Subspaces with normalized tight frame wavelets in \mathbb{R} .. 1661

Themis Mitsis, A note on the distance set problem in the plane .. 1669

Ross G. Pinsky, Asymptotics for the heat equation in the exterior of a shrinking compact set in the plane via Brownian hitting times .. 1673

Tero Kilpeläinen and Xiao Zhong, Removable sets for continuous solutions of quasilinear elliptic equations .. 1681

Hong-Xun Yi, On one problem of uniqueness of meromorphic functions concerning small functions .. 1689

Reinhard Menik, Serguei Naboko, and Christiane Tretter, Essential spectrum of a system of singular differential operators and the asymptotic Hain–Lüst operator .. 1699

Richard F. Bass, A uniqueness result for harmonic functions .. 1711

M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem .. 1717

David A. Cardon, Convolution operators and zeros of entire functions 1725

(Continued on inside back cover)