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ON REPRESENTABLE LINEARLY COMPACT MODULES

NGUYEN TU CUONG AND LE THANH NHAN

(Communicated by Wolmer V. Vasconcelos)

Abstract. For a flat R−module F, we prove that HomR(F,−) is a func-
tor from the category of linearly compact R−modules to itself and is exact.
Moreover, HomR(F,M) is representable when M is linearly compact and rep-
resentable. This gives an affirmative answer to a question of L. Melkersson
(1995) for linearly compact modules without the condition of finite Goldie di-
mension. The set of attached prime ideals of the co-localization HomR(RS ,M)
of a linearly compact representable R−module M with respect to a multiplica-
tive set S in R is described.

§1. Introduction

Let R be a commutative ring and M an R−module. L. Melkersson and P. Schen-
zel in [M-S] called the module HomR(RS ,M) the co-localization of M with respect
to a multiplicative set S in R. They showed in this paper that their construction
has many interesting properties when M is an Artinian module. For example, the
co-localization of M has a secondary representation in the sense of I. G. Macdonald
[M2] and the functor HomR(RS ,−) is then an exact functor from the category of
Artinian R−modules to the category of R−modules. However, they also proved
that this functor is not closed on the category of Artinian R−modules. Namely,
the co-localization of an Artinian module does not usually give an Artinian mod-
ule, and it may even have infinite Goldie dimension. The purpose of this paper is
to extend the main results of Melkersson-Schenzel for Artinian modules presented
in [M-S] to the class of all linearly compact representable R−modules. This class
strictly contains all Artinian R−modules. Moreover, instead of the functor of co-
localization, we consider the functor HomR(F,−) with F a flat module. Then we
show that this functor is closed with respect to the class of all linearly compact
representable modules. Therefore we get a positive answer to an open question of
Melkersson [Me, §5] in the case that M is a linearly compact module without the
condition of finite Goldie dimension. It should be mentioned that the concept of
linear compactness was first introduced by S. Lefschetz [Lef] for vector spaces of
arbitrary dimension and extended for modules by D. Zelinsky [Z], H. Leptin [Lep1],
[Lep2] and it plays an important role for duality in algebra.
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1928 NGUYEN TU CUONG AND LE THANH NHAN

This paper is divided into 4 sections. In the next section, we recall some basic
facts about linearly compact modules following [M1], [Z]. If M is a linearly compact
module and F a flat R−module, we show in this section that HomR(F,M) can carry
a linear topology which is derived from a direct system {Ft} of free R−modules of
finite type such that F = lim−→

t∈K
Ft. This topology is linearly compact and independent

of the choice of the direct system {Ft}, therefore ExtiR(F,M) = 0 for all i > 0 (The-
orem 2.4). It follows as an immediate consequence that the functor HomR(F,−)
is exact on the category of linearly compact R−modules to itself. We suppose in
addition in §3 that M is representable. The main result of this section is then to
show that HomR(F,M) is also representable (Theorem 3.6). This result gives an
affirmative answer to a question of L. Melkersson “is the module HomR(F,M) rep-
resentable when M is a representable R−module of finite Goldie dimension and F
is a flat R−module?” (see [Me, §5]) for a linearly compact module without the as-
sumption that M is of finite Goldie dimension. Starting from a minimal secondary
representation of M we can construct in §4 a minimal secondary representation of
the co-localization HomR(RS ,M) by a method similar to that used in [M-S]. This
will give a description of the set of attached prime ideals of HomR(RS ,M). The
technique of co-localization is then applied to describe the attached prime ideals of
a tensor product N ⊗M, where N is a finitely generated R−module and M is a
linearly compact representable R−module.

§2. Linearly compact modules

Throughout this paper, let R be a commutative topological ring and M a topo-
logical R−module. A nucleus of M is a neighborhood of the zero element of M and
a nuclear base of M is a base for the nuclei of M.

First we recall the concept of linearly compact modules by using the terminology
of I. G. Macdonald [M1].

Definition 2.1. (i) M is said to be linearly topologized if M has a nuclear baseM
consisting of open submodules.

(ii) A Hausdorff linearly topologized R−module M is said to be linearly compact
if M has the following property: if F is a family of closed cosets (i.e. the cosets of
closed submodules) in M which has the finite intersection property, then the cosets
in F have a non-empty intersection.

Now we present some facts about linearly compact modules which are often used
in this paper.

Lemma 2.2 (See [M1] and [Z]). (i) Let M be a linearly compact R−module and
N a submodule of M. Then N is closed if and only if N is linearly compact.

(ii) If M,N are Hausdorff linearly topologized R−modules, M is linearly compact
and f : M −→ N is a continuous homomorphism, then f(M) is linearly
compact and hence f is a closed map.

(iii) If M is a Hausdorff linearly topologized R−module and N is a closed submod-
ule of M, then M is linearly compact if and only if N and M/N are linearly
compact.

(iv) The direct product of linearly compact R−modules is linearly compact where
the topology is the product topology.

(v) The inverse limit of an inverse system of linearly compact R−modules and
continuous homomorphisms is linearly compact with the obvious topology.
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ON REPRESENTABLE LINEARLY COMPACT MODULES 1929

(vi) If M is a Hausdorff linearly topologized R−module and N1, . . . , Nr are lin-
early compact submodules of M, then N1 + . . .+Nr is linearly compact with
the induced topology.

Lemma 2.3 (See [J, Theorem 7.1]). Let {Mt} be inverse system of linearly com-
pact R−modules and continuous homomorphisms. Then lim←−

t

(i)(Mt) = 0 for all

i > 0, where lim←−
t

(i)(−) is the i− th right derived functor of the inverse limit.

Let P be a free R−module with a base {xi}i∈I and M a linearly topologized
R−module. According to C. U. Jensen [J, Theorem 7.4] we can define the topology
on the module HomR(P ;M) as the product topology M I via the isomorphism
HomR(P ;M) ∼= M I . Moreover, if f : P −→ P ′ is a homomorphism of two free
R−modules, the induced homomorphism f∗ : HomR(P ′;M) −→ HomR(P ;M) is
continuous.

Now, let F be a flat R−module. There exists by Lazard [L] a direct system
{Ft} of free R−modules of finite type such that F ∼= lim−→

t

Ft. Hence {HomR(Ft,M)}

forms an inverse system of linearly topologized R−modules with continuous ho-
momorphisms. Therefore lim←−

t

HomR(Ft,M) is a linearly topologized R−module.

Thus we define the topology of HomR(F,M) by the topology of the inverse limit
lim←−
t

HomR(Ft,M) and the isomorphisms

HomR(F,M) ∼= HomR(lim−→
t

Ft,M) ∼= lim←−
t

HomR(Ft,M).

In this case we say that the topology of HomR(F,M) is defined by the direct system
{Ft}.

It should be mentioned that in general there exist inverse systems of linearly
topologized modules with continuous homomorphisms whose inverse limits are al-
gebraically isomorphic but such that their topologies, which are determined from
these inverse systems as above, are not equivalent. For example, let (A,m) be a
complete local ring with the discrete topology. Let {A/mt} and {At} with At = A
be two inverse systems of A−modules with discrete topology. Then the topology
of A with respect to the first inverse system is the m−adic topology, while the
topology of A with respect to the second is the discrete topology. However, we
shall show that the topology of HomR(F,M) as above is independent of the direct
system {Ft} with F ∼= lim−→

t

Ft.

Theorem 2.4. Let F be a flat R−module and M a linearly compact R−module.
Let {Ft}t∈K be a direct system of free R−modules such that F ∼= lim−→

t∈K
Ft. Then we

have:
(i) The linearly topologized R−module HomR(F,M) defined by {Ft}t∈K is lin-

early compact and its topology is independent of this direct system.
(ii) ExtiR(F,M) = 0, for all i > 0.

Proof. (i). Clearly HomR(F,M) is linearly compact by Lemma 2.2 (iv), (v). Let
{F ′s}s∈K′ be a second direct system of free R−modules such that F ∼= lim−→

s∈K′

′limF ′s.

Set L = HomR(F,M) with the topology defined by the first direct system and
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1930 NGUYEN TU CUONG AND LE THANH NHAN

L′ = HomR(F,M) with the topology defined by the second one. We have to prove
that L is homeomorphic to L′. Set T =

⊕
t∈K

Ft and T ′ =
⊕
s∈K′

F ′s. Then T and T ′

are free R−modules. Note that F is a homomorphic image of T and it is also a
homomorphic image of T ′. Therefore there exists a commutative diagram

T1
g−−−−→ T

f−−−−→ F −−−−→ 0yk yh ‖

T ′1
g′−−−−→ T ′

f ′−−−−→ F −−−−→ 0

where T1 and T ′1 are free R−modules, and the rows are exact with f, f ′ the sur-
jective homomorphisms and h, k the homomorphisms lifting the identity map of F.
Therefore we get the commutative diagram

0 −−−−→ L′
f ′∗−−−−→ HomR(T ′;M)

g′∗−−−−→ HomR(T ′1;M)

‖
yh∗ yk∗

0 −−−−→ L
f∗−−−−→ HomR(T ;M)

g∗−−−−→ HomR(T1;M)

with the rows exact and the induced homomorphisms h∗, k∗, g′∗, g∗ continuous. It
follows that the identity map L −→ L′ is continuous. Similarly, we can show that
the identity map L′ −→ L is continuous. Therefore L is homeomorphic to L′.

(ii) We obtain by [J, Theorem 4.2] a spectral sequence

Ep,q2
∼= lim←−

t∈K

(p) ExtqR(Ft,M)⇒ ExtiR(lim−→
t∈K

Ft,M).

Since Ft is free, Ep,q2 = 0 for q > 0. Therefore this spectral sequence degenerates in
an isomorphism

lim←−
t∈K

(i) HomR(Ft,M) ∼= ExtiR(F,M).

Hence ExtiR(F,M) = 0 for all i > 0 by Lemma 2.3.

The following immediate consequence of Theorem 2.4, which is a generalization
of [M-S, Proposition 2.4], is often used in the sequel.

Corollary 2.5. Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be a short exact sequence of
linearly compact R−modules and F a flat R−module. Then the derived sequence

0 −→ HomR(F,M ′) −→ HomR(F,M) −→ HomR(F,M”) −→ 0

is also exact.

§3. Representability of HomR(F,M)

In this section we need the notion of secondary representation which is due to
I. G. Macdonald [M2]. This concept is in some sense dual to that of primary
decomposition. An R−module M is said to be secondary if M 6= 0 and for any
x ∈ R, the multiplication by x on M is either surjective or nilpotent. The radical
of the annihilator of M is then a prime ideal p and we say that M is p−secondary.

Let M be an R−module. A secondary representation of M is an expression of
M as a finite sum M = M1 + M2 + . . . + Mn of pi−secondary submodules. This
representation is said to be minimal if the prime ideals pi are all distinct and none
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ON REPRESENTABLE LINEARLY COMPACT MODULES 1931

of the summands Mi are redundant. Note that any secondary representation of M
can be refined to a minimal one. The set {p1, p2, . . . , pn} is then independent of
the choice of minimal representation of M. This set is denoted by AttR(M) and
called the set of attached prime ideals of M. The summands Mi, i = 1, . . . , n, are
called secondary component of M. If M = 0 or M has a secondary representation,
then we say that M is representable. It was shown by I. G. Macdonald [M2] and
R. Y. Sharp [S] that Artinian modules and injective modules are representable.

Lemma 3.1. Let F be a flat R−module and M a linearly compact R−module. If
M is p−secondary, then HomR(F,M) is either 0 or p−secondary.

Proof. Suppose that HomR(F,M) 6= 0. Given any x ∈ p, then xnM = 0 for some
n. Therefore xn HomR(F,M) = 0. Let x /∈ p. Since M is Hausdorff, 0 is a closed
submodule of M. Because the multiplication by x on M is continuous, 0M : xR is a
closed submodule of M. Hence it is linearly compact by Lemma 2.2 (i). Therefore
we have an exact sequence of linearly compact R−modules

0 −→ 0M : xR −→M
x−→M −→ 0.

It follows from Corollary 2.5 that the derived sequence

0 −→ HomR(F, 0M : xR) −→ HomR(F,M) x−→ HomR(F,M) −→ 0

is also exact. Thus, HomR(F,M) is p−secondary.

Lemma 3.2. Let M be a linearly compact R−module and N a submodule of M.
If N is p−secondary, then the closure N of N is also p−secondary.

Proof. Given any x ∈ p, then xnN = 0 for some n. Therefore, 0M : xnR ⊇ N.
Since 0M : xnR is a closed submodule of M containing N , 0M : xnR ⊇ N. It

follows that

xnN ⊆ xn(0M : xnR) = 0.

Let x /∈ p; then xN = N. Since N is a closed submodule of M, xN is also closed by
Lemma 2.2 (ii). Moreover, because xN ⊇ xN = N, xN ⊇ N. Therefore xN = N
and hence the multiplication by x on N is surjective. Thus N is p−secondary.

Corollary 3.3. Let M be a linearly compact and representable R−module. Then
there exists a minimal secondary representation of M in which all the secondary
components are linearly compact submodules.

Proof. Let M = M1 + . . . + Mn be a minimal secondary representation of M.
Suppose that Mi is pi−secondary for i = 1, . . . , n. Then AttRM = {p1, . . . , pn}.
We use M i to denote the closure of Mi for i = 1, . . . , n. Then by Lemma 3.2 we
get that M i is pi−secondary for i = 1, . . . , n. Therefore, M = M1 + . . .+Mn is a
secondary representation of M. All the secondary components M i, i = 1, . . . , n,
are linearly compact by Lemma 2.2 (i). It remains to prove that this representation
is minimal. If it is not minimal, then M i ⊆

∑
j 6=i
M j for some i. Hence M =

∑
j 6=i
M j .

It follows by Lemma 3.2 that pi /∈ AttRM. This gives a contradiction.

The next result can be easily derived by Corollary 3.3 and Lemma 2.2 (iii), (iv).

Corollary 3.4. Let M be a linearly compact and representable R−module and p

an element in AttRM. Then there exists a homomorphic image B of M such that
B is linearly compact p−secondary.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1932 NGUYEN TU CUONG AND LE THANH NHAN

For a representableR−moduleM, it is known that the isolated secondary compo-
nents of M depend only on M. By Corollary 3.3, we immediately have the following
consequence.

Corollary 3.5. Let M be a linearly compact and representable R−module. Then
all the isolated secondary components of M are linearly compact.

The theorem below is the main result of this section.

Theorem 3.6. Let F be a flat R−module and M a linearly compact and repre-
sentable R−module. Then HomR(F,M) is linearly compact and representable.

Proof. By Corollary 3.3, we can choose a minimal secondary representation M =
M1 + M2 + . . . + Mn such that all Mi, i = 1, . . . , n, are linearly compact. By
Lemma 3.1, the theorem is proved when n = 1. If n > 1, put N1 = M1 and
N2 = M2 + . . .+ Mn. Then N2 is linearly compact by Lemma 2.2 (vi). Hence, by
Lemma 2.2, N1 ∩N2 and N1 ⊕N2 are linearly compact. From the exact sequence
of linearly compact R−modules

0 −→ N1 ∩N2 −→ N1 ⊕N2 −→ N1 +N2 −→ 0

and by Corollary 2.5 we obtain

HomR(F,N1 +N2) ∼= HomR(F,N1 ⊕N2)
/

HomR(F,N1 ∩N2)
∼= (HomR(F,N1)⊕HomR(F,N2))

/
(HomR(F,N1) ∩HomR(F,N2))

∼= HomR(F,N1) + HomR(F,N2).

Therefore

HomR(F,N1 +N2) = HomR(F,N1) + HomR(F,N2),

where HomR(F,N1) and HomR(F,N2) are considered submodules of HomR(F,M).
Now the theorem follows by induction on n.

Remark 3.7. As we have mentioned in §1, L. Melkersson in [Me, §5] asked “Is
HomR(F,M) representable when F is a flat R−module and M is a representable
R−module of finite Goldie dimension?” Theorem 3.6 is a positive answer to this
question for linearly compact modules without the assumption that M is of finite
Goldie dimension. Recall that M is said to have finite Goldie dimension if it does
not contain a direct sum of infinitely many non-zero submodules. It should be
noted that there exist linearly compact representable modules of infinite Goldie
dimension. For instance, by [Lef], there exist linearly compact vector spaces of
infinite dimension. Clearly, these spaces are representable. However, we give below
an example about a large class of such modules.

Example 3.8. Let (R,m) be a Noetherian local ring with dimR > 2. Let p 6= m

be a prime ideal of R with ht(p) > 1. Let M be a linearly compact representable
R−module which has a submodule isomorphic to the injective hull E of R/m.
Then HomR(Rp,M) is a linearly compact representable module of infinite Goldie
dimension.

Proof. Note first that there always exists such a module M. For example, the in-
jective hull E of R/m is Artinian, therefore it is representable and linearly compact
with the discrect topology. Since AssRp

(HomR(Rp, E)) ⊆ AssRp
(HomR(Rp,M)),

it can be easily derived by [M-S, 4.1] that AssRp
(HomR(Rp,M)) = Spec(Rp). Since

dimRp
(Rp) > 1, Spec(Rp) is an infinite set. Therefore Ass(HomR(Rp,M)) is an
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ON REPRESENTABLE LINEARLY COMPACT MODULES 1933

infinite set. Hence HomR(Rp,M) is not of finite Goldie dimension. It follows from
Theorem 3.6 that HomR(Rp,M) is a linearly compact representable module.

§4. Co-localization

We first recall the notion of co-localization which is due to L. Melkersson and
P. Schenzel [M-S]. Let M be an R−module and S a multiplicative set of R. The
co-localization of M with respect to S is the module HomR(RS ,M). When M
is Artinian, it is known by [M-S] that HomR(RS ,M) is almost never an Artinian
RS−module. So the functor HomR(RS ,−) is not closed on the category of Artinian
modules, while it is always closed on the category of linearly compact representable
R−modules by Theorem 3.6. Therefore, in some sense, it seems to the authors
that it is quite interesting to study the co-localization functor on linearly compact
representable R−modules.

Lemma 4.1. Let S be a multiplicative set of R, and let M be a linearly compact
R−module. Let

ϕ : HomR(RS ,M) −→M

be the homomorphism defined by ϕ(f) = f(1), for any f ∈ HomR(RS ,M). Then

Imϕ =
⋂
s∈S

sM.

Proof. Put M ′ =
⋂
s∈S

sM, I =
⋃
s∈S

(0R : s). Then M ′ is linearly compact by Lemma

2.2 (i), (ii). Let R′ = R/I. Then M ′ is an R′−module. Let S′ be the image of S in
R′. It follows that

HomR(RS ,M ′) ∼= lim←−{M
′
s; g

t
s},

where M ′s = M ′ for all s ∈ S′ and gts : M ′t →M ′s is multiplication by a ∈ R′ if t =
as. We have an exact sequence of inverse systems of linearly compact R−modules

0 −→ {0M ′ : s, gts} −→ {M ′s, gts} −→ {M ′/0M ′ : s, gts} −→ 0,

where the corresponding maps on 0M ′ : s, M ′s, resp. M ′/0M ′ : s are multiplication
by a if t = as. By Lemma 2.3, the homomorphism

lim←−{M
′
s, g

t
s} −→ lim←−{M

′/0M ′ : s, gts}

is surjective. We have by [M1, 3.12] that sM ′ = s
⋂
t∈S

tM =
⋂
t∈S

stM = M ′ for all

s ∈ S′. Hence, for any t, s ∈ S′ with t = as we obtain aM ′ = M ′. Therefore

gts : M ′/0M ′ : t −→M ′/0M ′ : s

is an isomorphism. Hence lim←−{M
′/0M ′ : s, gts} −→M ′ is an isomorphism. It follows

that ϕ : HomR(RS ,M ′) −→M ′ is surjective.
Let f ∈ HomR(RS ,M). Then f(1) ∈ M ′ because f(1) = sf(1/s) ∈ sM for all

s ∈ S. Thus ϕ : HomR(RS ,M) −→M ′ is surjective.

Now we can generalize Melkersson-Schenzel’s result [M-S, Theorem 3.2] for lin-
early compact and representable modules as follows.
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Theorem 4.2. Let S be a multiplicative set of R and M a linearly compact and
representable R−module with M = M1 + M2 + . . . + Mn a minimal secondary
representation in which all Mi are linearly compact. Let pi = Rad(AnnRMi) for
i = 1, . . . , n and S ∩ pi = ∅ for i = 1, . . . ,m, respectively S ∩ pi 6= ∅ for i =
m+ 1, . . . , n. Then

HomR(RS ,M) = HomR(RS ,M1) + HomR(RS ,M2) + . . .+ HomR(RS ,Mm)

is a minimal secondary representation of HomR(RS ,M). In particular, we have

AttR(HomR(RS ,M)) = {p ∈ AttR(M) : p ∩ S = ∅}.

Proof. For i = m + 1, . . . , n, since S ∩ pi 6= ∅, HomR(RS ,Mi) = 0. Therefore by
Theorem 3.6 we have

HomR(RS ,M) = HomR(RS ,M1) + HomR(RS ,M2) + . . .+ HomR(RS ,Mm).

Since HomR(RS ,Mi) 6= 0 by Lemma 4.1, it is pi−secondary for i = 1, . . . ,m by
Lemma 3.1. This representation is minimal because if it is not, then HomR(RS ,Mi)
⊆
∑
j 6=i

HomR(RS ,Mj) for some i. Therefore

ϕ(HomR(RS ,Mi)) ⊆
∑
j 6=i

ϕ(HomR(RS ,Mj))

and hence Mi ⊆
∑
j 6=i
Mj for some i by Lemma 4.1. This gives a contradiction.

For an R−module M , the set

CosRM = {p ∈ SpecR : HomR(Rp,M) 6= 0}
is called the co-support of M (see [M-S]).

Corollary 4.3. Let M be a linearly compact and representable R−module. Then
we have:

(i) Any prime ideal of R containing an element of AttRM belongs to CosRM.
(ii) Any prime ideal of CosRM contains an element of AttRM.
(iii) M has a composition series 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr−1 ⊂ Mr = M such

that all Mi, i = 1, . . . , r, is linearly compact representable and Mi/Mi−1 is
secondary. For such a composition series, let pi = Rad(AnnR(Mi/Mi−1), i =
1, . . . , r. Then we have

AttRM ⊆ {p1, . . . , pr} ⊆ CosRM.

In particular, these three sets have the same minimal elements equal to the
set of minimal prime ideals containing AnnRM.

Proof. (i) and (ii) are immediate consequences of Theorem 4.2. For (iii), there
exists by Corollary 3.3 a secondary representable M = M1 + . . .+Mn such that all
Mi are linearly compact. Therefore the composition series

0 ⊂M1 ⊂M1 +M2 ⊂ . . . ⊂M1 + . . .+Mn−1 ⊂M
is as required. For such a composition series, it follows by Corollary 2.5 that

CosRMi = CosRMi−1 ∪CosR(Mi/Mi−1),

for all i = 1, . . . , r. Therefore we get AttRM ⊆ {p1, . . . , pr} ⊆ CosRM. The rest
of (iii) is derived by (i), (ii) and [M2, 2.7].

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ON REPRESENTABLE LINEARLY COMPACT MODULES 1935

The following result is an immediate consequence of Corollary 4.3.

Corollary 4.4. Let M be a linearly compact and representable R−module. Then
CosRM = V (AnnRM), i.e. CosRM is a closed subset of SpecR. In particular,
CosM = ∅ if and only if M = 0.

Suppose that R is a Noetherian ring. Let N be a finitely generated R−module
and M a linearly compact R−module. Let Rn

f−→ Rm
g−→ N −→ 0 be a finite

presentation of N. So we get the induced exact sequence Mn f∗−→Mm g∗−→N⊗M
−→ 0. It follows by Lemma 2.2 (iv) that Mn and Mm are linearly compact with
respect to the product topology. Completely similar to the proof of [J, Theorem
7.4] we can show that the homomorphism f∗ is continuous. Therefore Im(f∗) is
closed by Lemma 2.2 (ii). Hence Mm/Ker(g∗) is linearly compact by Lemma 2.2
(iii). Since Mm/Ker(g∗) ∼= N ⊗M, we can give N ⊗M a topological structure
deduced from the topology of Mm/Ker(g∗) and, with this topology, N ⊗ M is
linearly compact.

In [M-S], L. Melkersson and P. Schenzel described the attached prime ideals of
N ⊗M, where R is a commutative ring and M is an Artinian R−module. This is
dual to a theorem of Bourbaki of Ass Hom(N ;M) (see [B, §1, Proposition 10]). As
an application of the technique of co-localization, we will describe this for the case
when R is a Noetherian ring and M is a linearly compact representable R−module.

Theorem 4.5. Let R be a Noetherian ring, N a finitely generated R−module and
M a linearly compact R−module. Then we have:

(i) The topology of N⊗M defined as above does not depend on finite presentations
of N.

(ii) Suppose in addition that M is representable; then N⊗M is representable and

AttR(N ⊗M) = SuppRN ∩AttRM.

Proof. (i) Let Rn
′ −→ Rm

′ −→ N −→ 0 be the second finite presentation of N. Set
P = N ⊗M with the topology defined by the first presentation and P ′ = N ⊗M
defined by the second one. Then, by the same method of the proof of Theorem 2.4,
we can show that the identity map P −→ P ′ is a homeomorphism.

(ii) Clearly V (AnnR(N⊗M)) ⊆ SuppRN. Since N⊗M is a homomorphic image
of Mm, it is representable and

AttR(N ⊗M) ⊆ SuppRN ∩AttRMm = SuppRN ∩AttRM.

Conversely, let p ∈ SuppRN ∩ AttRM. Then M has by Corollary 3.4 a linearly
compact p−secondary quotient B. Since R is Noetherian, pB 6= B and pB is
a closed submodule of B by Lemma 2.2 (vi). Therefore C = B/pB is a lin-
early compact p−secondary homomorphic image of M with p = AnnR C. Hence
pRp HomR(Rp, C) = 0. Therefore, by the same way as in the proof of [M-S, Lemma
5.1] and by Corollary 2.5 we can show that

HomR(Rp, N ⊗R C) ∼= HomR(Rp, C)⊗Rp
Np
∼= HomR(Rp, C)⊗Rp/pRp

Np/pRp.

Since p = AnnR C, it follows by Lemma 4.4 that HomR(Rp, C) 6= 0. Hence
HomR(Rp, C) and Np/pRp are non-zero vector spaces over the field Rp/pRp. There-
fore HomR(Rp, N ⊗R C) 6= 0. Hence N ⊗ C 6= 0, so it is p−secondary. Therefore
p ∈ AttR(N ⊗M).
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