Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On representable linearly compact modules


Authors: Nguyen Tu Cuong and Le Thanh Nhan
Journal: Proc. Amer. Math. Soc. 130 (2002), 1927-1936
MSC (1991): Primary 13C05; Secondary 13J99
DOI: https://doi.org/10.1090/S0002-9939-01-06298-0
Published electronically: December 31, 2001
MathSciNet review: 1896024
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a flat $R-$module $F,$ we prove that $\operatorname{Hom}_{R}(F,-)$ is a functor from the category of linearly compact $R-$modules to itself and is exact. Moreover, $\operatorname{Hom}_{R}(F,M)$ is representable when $M$ is linearly compact and representable. This gives an affirmative answer to a question of L. Melkersson (1995) for linearly compact modules without the condition of finite Goldie dimension. The set of attached prime ideals of the co-localization $\operatorname{Hom}_{R}(R_{S},M)$ of a linearly compact representable $R-$module $M$ with respect to a multiplicative set $S$ in $R$ is described.


References [Enhancements On Off] (What's this?)

  • [B] N. Bourbaki, Algébre commutative, Hermann, Paris, 1961. MR 30:2027
  • [C-N] N. T. Cuong and T. T. Nam, A local homology theory for linearly compactmodules, Preprint.
  • [J] C. U. Jensen, Les Foncteurs Dérivés de $\varprojlim$ et leurs Applications en Théorie des Modules, Springer-Verlag, Berlin-Heidelberg-New York, 1972. MR 53:10874
  • [L] D. Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81-128. MR 40:7310
  • [Lef] S. Lefschetz, Algebraic Topology, vol. 27, Colloq. Lect. Amer. Soc., 1942. MR 4:84f
  • [Lep1] H. Leptin, Linear kompakte Moduln und Ringe - I, Math. Z. 62 (1955), 241-267. MR 16:1085a
  • [Lep2] H. Leptin, Linear kompakte Moduln und Ringe - II, Math. Z. 66 (1957), 289-327. MR 19:245a
  • [M1] I. G. Macdonald, Duality over complete local rings, Topology 1 (1962), 213-235. MR 27:1476
  • [M2] I. G. Macdonald, Secondary representation of modules over a commutative ring, Symposia Mathematica 11 (1973), 23-43. MR 49:7252
  • [Ma] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986. MR 88h:13001
  • [Me] L. Melkersson, Cohomological properties of modules with secondary representations, Math. Scand. (2) 77 (1995), 197-208. MR 97d:13014
  • [M-S] L. Melkersson and P. Schenzel, The co-localization of an Artinian module, Proc. Edinburgh Math. Soc. 38 (1995), 121-131. MR 96a:13020
  • [S] R. Y. Sharp, Secondary representations for injective modules over commutative Noetherian rings, Proc. Edinburgh Math. Soc. 20 (1976), 143-151. MR 54:2639
  • [Z] D. Zelinsky, Linearly compact modules and rings, Amer. J. Math. 75 (1953), 79-90. MR 14:532a

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 13C05, 13J99

Retrieve articles in all journals with MSC (1991): 13C05, 13J99


Additional Information

Nguyen Tu Cuong
Affiliation: Institute of Mathematics, P.O. Box 631, Boho, 10.000 Hanoi, Vietnam
Email: Cuongnt@hn.vnn.vn

Le Thanh Nhan
Affiliation: Institute of Mathematics, P.O. Box 631, Boho, 10.000 Hanoi, Vietnam

DOI: https://doi.org/10.1090/S0002-9939-01-06298-0
Keywords: Linearly compact module, secondary representation, co-localization
Received by editor(s): September 20, 2000
Received by editor(s) in revised form: February 1, 2001
Published electronically: December 31, 2001
Additional Notes: This work was supported in part by the National Basis Research Program in Natural Science of Vietnam
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society