Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Loewner problem in the class $\mathbf{N}_{\kappa}$


Authors: D. Alpay, A. Dijksma and H. Langer
Journal: Proc. Amer. Math. Soc. 130 (2002), 2057-2066
MSC (2000): Primary 30E05, 47A57; Secondary 47B25, 47B50
DOI: https://doi.org/10.1090/S0002-9939-01-06345-6
Published electronically: December 31, 2001
MathSciNet review: 1896042
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Loewner's theorem on boundary interpolation of $\mathbf{N}_{\kappa}$ functions is proved under rather general conditions. In particular, the hypothesis of Alpay and Rovnyak (1999) that the function $f$, which is to be extended to an $\mathbf{N}_{\kappa}$function, is defined and continuously differentiable on a nonempty open subset of the real line, is replaced by the hypothesis that the set on which $f$ is defined contains an accumulation point at which $f$satisfies some kind of differentiability condition. The proof of the theorem in this note uses the representation of $\mathbf{N}_{\kappa}$ functions in terms of selfadjoint relations in Pontryagin spaces and the extension theory of symmetric relations in Pontryagin spaces.


References [Enhancements On Off] (What's this?)

  • [ABDR] D. Alpay, V. Bolotnikov, A. Dijksma, and J. Rovnyak, Some extensions of Loewner's theory of monotone operator functions, to appear in J. Funct. Anal.
  • [ADL] D. Alpay, A. Dijksma, and H. Langer, Classical Nevanlinna-Pick interpolation with real interpolation points, Operator Theory: Adv. Appl., vol. 115, Birkhäuser Verlag, Basel, 2000, 1-50. MR 2001g:47026
  • [ADRS] D. Alpay, A. Dijksma, J. Rovnyak, and H. S. V. de Snoo, Schur functions, operator colligations, and reproducing kernel Pontryagin spaces, Operator Theory: Adv. Appl., vol. 96, Birkhäuser Verlag, Basel, 1997. MR 2000a:47024
  • [AR] D. Alpay and J. Rovnyak, Loewner's theorem for kernels having a finite number of negative squares, Proc. Amer. Math. Soc. 127 (1999), no. 4, 1109-1117. MR 99m:47013
  • [BS] J. Bendat and S. Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc. 79 (1955), 58-71. MR 18:588b
  • [D] W. L. Donoghue, Jr., Monotone matrix functions and analytic continuation, Springer-Verlag, New York, 1974. MR 58:6279
  • [DL] A. Dijksma and H. Langer, Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions, Operator Theory: Adv. Appl., vol. 95, Birkhäuser Verlag, Basel, 1997, 69-91. MR 98g:47015
  • [DLLS] A. Dijksma, H. Langer, A. Luger, and Yu. Shondin, A factorization result for generalized Nevanlinna functions in the class $N_{\kappa}$, Integral Equations Operator Theory 36 (2000), 121-125. MR 2000i:47027
  • [DLS1] A. Dijksma, H. Langer, and H. S. V. de Snoo, Hamiltonian systems with eigenvalue depending boundary conditions, Operator Theory: Adv. Appl., vol. 35, Birkhäuser Verlag, Basel, 1988, 37-83. MR 91b:47104
  • [DLS2] A. Dijksma, H. Langer, and H. S. V. de Snoo, Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions, Math. Nachr. 161 (1993), 107-154. MR 94m:47091
  • [DS] A. Dijksma and H. S .V. de Snoo, Symmetric and selfadjoint relations in Krein spaces I, Operator Theory: Adv. Appl., vol. 24, Birkhäuser Verlag, Basel, 1987, 145-166. MR 88j:47050
  • [IKL] I.S. Iohvidov, M.G. Krein, and H. Langer, Introduction to the spectral theory of operators in spaces with an indefinite metric, Mathematical Research, vol. 9, Akademie Verlag, Berlin, 1982. MR 85g:47050
  • [K] A. Korányi, On a theorem of Löwner and its connections with resolvents of self-adjoint transformations, Acta Sci. Math. 17, 1956, 63-70. MR 18:588c
  • [KL1] M. G. Kre{\u{\i}}\kern.15emn and H. Langer, Über die $Q$-Funktion eines $\pi$-hermiteschen Operators im Raume $\Pi_{\kappa}$, Acta Sci. Math. (Szeged) 34 (1973), 191-230. MR 47:7504
  • [KL2] -, Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume ${\Pi}_{\kappa}$ zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen, Math. Nachr. 77 (1977), 187-236. MR 57:1173
  • [KL3] -, On some extension problems which are closely connected with the theory of Hermitian operators in a space $\pi _{\kappa }$. III. Indefinite analogues of the Hamburger and Stieltjes moment problems. Part I, Beiträge Anal. (1979), no. 14, 25-40. MR 83b:47047a
  • [KL4] -, Some propositions on analytic matrix functions related to the theory of operators in the space $\Pi_{\kappa}$, Acta Sci. Math. (Szeged) 43 (1981), 181-205. MR 82i:47053
  • [L] H. Langer, A characterization of generalized zeros of negative type of functions of the class $N_{\kappa}$, Operator Theory: Adv. Appl., vol. 17, Birkhäuser Verlag, Basel, 1986, 201-212. MR 88j:47051
  • [Loe] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216.
  • [LS] H. Langer and A. Schneider, On spectral properties of regular quasidefinite pencils $F-\lambda G$, Results in Mathematics 19 (1991), 89-109. MR 92d:47017
  • [RR] M. Rosenblum and J. Rovnyak, Hardy classes and operator theory, Oxford Mathematical Monographs, Oxford University Press, New York, 1985, Dover reprint, 1997. MR 87e:47001; MR 97j:47002
  • [SK] B. Sz.-Nagy and A. Korányi, Operatortheoretische Behandlung und Verallgemeinerung eines Problemkreises in der komplexen Funktionentheorie, Acta Math. 100 (1958), 171-202. MR 24:A437

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30E05, 47A57, 47B25, 47B50

Retrieve articles in all journals with MSC (2000): 30E05, 47A57, 47B25, 47B50


Additional Information

D. Alpay
Affiliation: Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel
Email: dany@math.bgu.ac.il

A. Dijksma
Affiliation: Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
Email: dijksma@math.rug.nl

H. Langer
Affiliation: Department of Mathematics, Technical University Vienna, Wiedner Hauptstrasse 8–10, A–1040 Vienna, Austria
Email: hlanger@mail.zserv.tuwien.ac.at

DOI: https://doi.org/10.1090/S0002-9939-01-06345-6
Received by editor(s): October 26, 2000
Received by editor(s) in revised form: February 9, 2001
Published electronically: December 31, 2001
Additional Notes: The second and third authors gratefully acknowledge support through Harry T. Dozor fellowships at the Ben-Gurion University of the Negev, Beer-Sheva, Israel, in the years 1999 and 2000 respectively, and support from NWO, the Netherlands Organization for Scientific Research (grant B 61-453).
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society