Hyperbolic hypersurfaces in of Fermat-Waring type

Authors:
Bernard Shiffman and Mikhail Zaidenberg

Journal:
Proc. Amer. Math. Soc. **130** (2002), 2031-2035

MSC (2000):
Primary 32Q45, 32H25; Secondary 14J70

DOI:
https://doi.org/10.1090/S0002-9939-01-06417-6

Published electronically:
December 27, 2001

MathSciNet review:
1896038

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we show that there are algebraic families of hyperbolic, Fermat-Waring type hypersurfaces in of degree , for all dimensions . Moreover, there are hyperbolic Fermat-Waring hypersurfaces in of degree possessing complete hyperbolic, hyperbolically embedded complements.

**[Br]**Brody R. Compact manifolds and hyperbolicity. Trans. Amer. Math. Soc. 235 (1978), 213-219. MR**57:10010****[DeEl]**Demailly J.-P., El Goul J. Hyperbolicity of generic surfaces of high degree in projective 3-space. Amer. J. Math. 122 (2000), 515-546. MR**2001f:32045****[Fu1]**Fujimoto H. On meromorphic maps into the complex projective space. J. Math. Soc. Japan 26 (1974), 272-288. MR**49:10924****[Fu2]**Fujimoto H. A family of hyperbolic hypersurfaces in the complex projective space. Complex Variables Theory Appl. 43 (2001), 273-283. CMP**2001:10****[Gr]**Green M. Some Picard theorems for holomorphic maps to algebraic varieties. Amer. J. Math. 97 (1975), 43-75. MR**51:3544****[Kh]**Ha Huy Khoai. Hyperbolic surfaces in . Proc. Amer. Math. Soc. 125 (1997), 3527-3532. MR**98e:32046****[MaNo]**Masuda K., Noguchi J. A construction of hyperbolic hypersurface of . Math. Ann. 304 (1996), 339-362. MR**97a:32025****[Mc]**McQuillan M. Holomorphic curves on hyperplane sections of 3-folds. Geom. Funct. Anal. 9 (1999), 370-392. MR**2000f:32035****[Pa]**Pacienza G. Rational curves on general projective hypersurfaces. E-print, math.AG/0010037, Oct. 2000, 21pp.**[ShZa]**Shiffman B., Zaidenberg M. Two classes of hyperbolic surfaces in . International J. Math. 11 (2000), 65-101. CMP**2000:12****[Shr1]**Shirosaki M. Hyperbolic hypersurfaces in the complex projective spaces of low dimensions. Kodai Math. J. 23 (2000), 224-233. MR**2001e:32038****[Shr2]**Shirosaki M. A hyperbolic hypersurface of degree 10. Kodai Math. J. 23 (2000), 376-379. MR**2001i:32041****[SiYe]**Siu Y.-T., Yeung S.-K. Defects for ample divisors of abelian varieties, Schwarz lemma, and hyperbolic hypersurfaces of low degrees. Amer. J. Math. 119 (1997), 1139-1172. MR**98h:32044****[To]**Toda N. On the functional equation . Tôhoku Math. J. (2) 23 (1971), 289-299. MR**45:551****[Za1]**Zaidenberg M. The complement of a generic hypersurface of degree in is not hyperbolic. Siberian Math. J. 28 (1987), 425-432. MR**88k:32063****[Za2]**Zaidenberg M. Stability of hyperbolic imbeddedness and construction of examples. Math. USSR Sbornik 63 (1989), 351-361. MR**89f:32047****[Za3]**Zaidenberg M. Hyperbolicity in projective spaces. Proc. Conf. ``Diophantine Problemes, Hyperbolic Spaces and related topics", RIMS, Kyoto, Japan, 26-31 October 1992; Tokyo, TIT, 1992, 136-156. MR**95a:32045**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
32Q45,
32H25,
14J70

Retrieve articles in all journals with MSC (2000): 32Q45, 32H25, 14J70

Additional Information

**Bernard Shiffman**

Affiliation:
Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218

Email:
shiffman@math.jhu.edu

**Mikhail Zaidenberg**

Affiliation:
Université Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF, BP 74, 38402 St. Martin d’Hères cédex, France

Email:
zaidenbe@ujf-grenoble.fr

DOI:
https://doi.org/10.1090/S0002-9939-01-06417-6

Received by editor(s):
January 26, 2001

Published electronically:
December 27, 2001

Additional Notes:
Research of the first author partially supported by NSF grant #DMS-9800479.

Communicated by:
Steven R. Bell

Article copyright:
© Copyright 2001
American Mathematical Society