A CONTINUUM WHOSE HYPERSPACE OF SUBCONTINUA IS NOT g-CONTRACTIBLE

ALEJANDRO ILLANES

(Communicated by Alan Dow)

Abstract. A topological space Y is said to be g-contractible provided that there exists a continuous onto function $f : Y \to Y$ such that f is homotopic to a constant function. Answering a question by Sam B. Nadler, Jr., in this paper we construct a metric continuum Z such that its hyperspace of subcontinua $C(Z)$ is not g-contractible.

1. Introduction

A continuum is a compact connected metric space. A map is a continuous function. A topological space Y is said to be g-contractible provided that there exists an onto map $f : Y \to Y$ such that f is homotopic to a constant map. For a continuum X, $C(X)$ (resp., 2^X) denotes the hyperspace of subcontinua (resp., nonempty closed subsets) of X, with the Hausdorff metric.

Clearly, every contractible space is g-contractible. A simple closed curve is an easy example of a g-contractible and non-contractible continuum. In fact, the Hahn-Mazurkiewicz Theorem (see [7, Theorem 8.14]) implies that any locally connected continuum is g-contractible. The notion of g-contractibility was introduced by D. P. Bellamy in [1]. In [5], S. B. Nadler, Jr., studied g-contractibility in hyperspaces. He proved that, for any continuum X, $C(X)$ and 2^X is g-contractible ([5, 3.9] or [6, Theorem 4.10]), and if X is a continuum such that X contains an open subset with uncountably many components, then $C(X)$ is g-contractible ([5, 3.12] or [6, Theorem 4.12]). Nadler also asked if $C(X)$ is g-contractible for any continuum X ([5, 3.10] or [6, Question 4.11]). In this paper we answer Nadler’s question in the negative by constructing an example of a continuum Z such that $C(Z)$ is not g-contractible.

2. Auxiliary results

Lemma 1. If $C(X)$ is g-contractible, then there exists an onto map $f : C(X) \to C(X)$ and there exists a map $\psi : C(X) \times [0, 1] \to C(X)$ such that:
- $\psi(A, 0) = f(A)$ and $\psi(A, 1) = X$ for each $A \in C(X)$,
- if $A \in C(X)$ and $0 \leq s \leq t \leq 1$, then $\psi(A, s) \subset \psi(A, t)$.

Proof. Suppose that $C(X)$ is g-contractible. Then there exist:
- an onto map $f : C(X) \to C(X),

Received by the editors April 24, 2000 and, in revised form, February 19, 2001.
2000 Mathematics Subject Classification. Primary 54B20.
Key words and phrases. Continuum, g-contractible, hyperspace.

©2002 American Mathematical Society

2179
A; then \(n \) be as in Lemma 1. From Lemma 3, it follows that \(C \) such that \(A \setminus B \).

Thus, if \(A \) is an element of \(\mathcal{C} \) that is connected im kleinen at \(p \):

Clearly, \(F \) is a map such that \(F(A,0) = f(A) \) and \(F(A,1) = X \) for each \(A \in C(X) \).

Now, let \(\psi : C(X) \times [0,1] \to C(X) \) be given by

\[
\psi(a,t) = \bigcup \{ F(A,s) : s \in [0,t] \}.
\]

It is easy to show that \(\psi \) has the required properties. \(\square \)

The proof of the following lemma is similar to the proof of Theorem (2) of \([2]\).

Lemma 2. Let \(f : X \to Y \) be an onto map between continua. Let \(q \in Y \). If \(X \) is connected im kleinen at each point of \(f^{-1}(q) \), then \(Y \) is connected im kleinen at \(q \).

The following result is an easy consequence of Theorem 2 of \([3]\).

Lemma 3. Let \(X \) be a continuum and let \(p \in X \) be a point such that \(X \) is connected im kleinen at \(p \). Then \(C(X) \) is connected im kleinen at each element \(A \) that satisfies \(p \in A \).

3. The example

The example is constructed in the euclidean plane \(\mathbb{R}^2 \). For each subset \(A \) of \(\mathbb{R}^2 \), let \(-A\) denote the set \(-A = \{-p \in \mathbb{R}^2 : p \in A\}. \) Let \(\theta = (0,0) \in \mathbb{R}^2. \) Let \(X_0 = \{0\} \times [-1,1]. \) For each \(n \geq 1, \) let \(X_n = \{\frac{1}{n}\} \times [0,\frac{1}{n}]. \) For each \(n \geq 1, \) let \(L_n \) be a homeomorphic copy of the real line such that: (a) \(L_n \subset (\frac{1}{n+1}, \frac{1}{n}) \times [0,1], \) (b) \(L_n \cap \{[0,1]\} \neq \emptyset, \) and (c) \(\text{cl}_{2}(L_n) = L_n \cup X_n \cup X_{n+1}. \) Let \(Y_0 = X_0 \cup (\bigcup \{X_n : n \geq 1\}) \cup (\bigcup \{L_n : n \geq 1\}). \)

Finally, put \(X = \overline{(-Y_0)} \cup Y_0. \)

Clearly, \(X \) is a continuum (shown on the next page).

Proof. Now we prove that \(C(X) \) is not \(g \)-contractible. Suppose, to the contrary, that \(C(X) \) is \(g \)-contractible. Let \(f : C(X) \to C(X) \) and \(\psi : C(X) \times [0,1] \to C(X) \) be as in Lemma 1. From Lemma 3, it follows that \(C(X) \) is connected im kleinen at any element \(A \in C(X) \) such that \(A \cap \bigcup \{L_n : n \geq 1\} \cup \bigcup \{-L_n : n \geq 1\} \neq \emptyset. \)

Thus, if \(A \) is an element of \(C(X) \) such that \(C(X) \) is not connected im kleinen at \(A, \) then \(A \) is contained at some arc \(X_n \) or at some arc \(-X_n \) \((n \geq 0). \)

Now we prove the following.

If \(A \) is a locally connected subcontinuum of \(C(X) \), then \(A \) intersects finitely many sets of the form \(C(X_n) \) (and finitely many sets of the form \(C(-X_n) \)).

Suppose, to the contrary, that there is a sequence of integers \(n_1 < n_2 < ... \) such that \(A \cap C(X_{n_k}) \neq \emptyset \) for each \(k \geq 1. \) Fix an element \(B_k \in A \cap C(X_{n_k}). \) Then \(B_k \to \{\theta\}. \) Thus \(\{\theta\} \in A. \) Since \(A \) is locally connected, there exists a subcontinuum \(B \) of \(A \) such that \(\{\theta\} \in B. \) \(B_k \in B \) for some \(k \) and \(H(\{\theta\}, B) = \frac{1}{4} \) for each \(B \in B, \) where \(H \) is the Hausdorff metric for \(C(X). \) Let \(B_0 = \bigcup B. \) From \([6]\) Lemma 1.43],
Next we show that there exists a sequence of subcontinua \(\{A_n\}_{n=1}^\infty \) of \(X \) such that \(A_n \to \{\theta\} \), \(f(A_n) \to \{\theta\} \) and \(f(A_n) \subset \bigcup \{X_m : m \geq 1\} \) for each \(n \).

Each continuum of one of the forms \(X_i \) or \(-X_i \) is an arc, thus the hyperspaces \(C(X_i) \) and \(C(-X_i) \) are 2-cells ([3] Example 0.54). Therefore, the sets \(f[C(X_i)] \) and \(f[C(-X_i)] \) are locally connected (see [7] Proposition 8.16). Given \(n \geq 1 \), by the previous claim, there exists a positive integer \(k_n \) such that, \(n \leq k_n \) and \(f[C(X_0) \cup C(X_1) \cup C(-X_1) \cup \ldots \cup C(X_n) \cup C(-X_n)] \cap C(X_{k_n}) = \emptyset \). Fix a point \(p \in X_{k_n} \); then it is easy to check that \(C(X) \) is not connected im kleinen at \(\{p\} \). According to Lemma 2, there exists an element \(A_n \in C(X) \) such that \(C(X) \) is not connected im kleinen at \(A_n \) and \(f(A_n) = p \). Thus, \(A_n \) is contained in some set of the form \(X_r \) or in some set of the form \(-X_r \) for some \(r \geq 0 \). By the choice of \(k_n \), \(r \geq n \). This implies that \(H(\{\theta\}, A_n) < \frac{1}{n} \). Since \(k_n \geq n \) and \(p \in X_{k_n} \), \(H(\{\theta\}, f(A_n)) = H(\{\theta\}, \{p\}) \leq \frac{1}{n} \). This completes the construction of \(A_n \) and proves the claim.

In a similar way, it is possible to construct a sequence of subcontinua \(\{B_n\}_{n=1}^\infty \) of \(X \) such that \(B_n \to \{\theta\} \), \(f(B_n) \to \{\theta\} \) and \(f(B_n) \subset \bigcup \{-X_m : m \geq 1\} \) for each \(n \).

We are ready to obtain the final contradiction.

Since \(f \) is continuous, \(f(A_n) \to f(\{\theta\}) \). Thus, \(f(\{\theta\}) = \{\theta\} \). We know that \(\psi(\{\theta\}, 0) = f(\{\theta\}) = \{\theta\} \) and \(\psi(\{\theta\}, 1) = X \); then the number \(t_0 = \max \{t \in [0, 1] : \psi(\{\theta\}, t) = \{\theta\}\} \) is in the interval \([0, 1]\). Thus, \(\psi(\{\theta\}, t_0) = \{\theta\} \). From the continuity of the map \(\psi \), there exists a number \(s \in (t_0, 1) \) such that \(H(\{\theta\}, \psi(\{\theta\}, s)) < \frac{1}{8} \). Hence, \(\{\theta\} \) is properly contained in \(\psi(\{\theta\}, s) \).
On the other hand, \(\lim_{n \to \infty} \psi(B_n, s) = \psi(\{\theta\}, s) = \lim_{n \to \infty} \psi(A_n, s) \), so there exists \(R \geq 1 \) such that, for each \(r \geq R \), \(\max\{H(\psi(\{\theta\}, s), \psi(A_r, s)), H(\psi(\{\theta\}, s), \psi(B_r, s))\} < \frac{1}{8} \). Given \(r \geq R \), \(\psi(A_r, s) \) is a subcontinuum of \(X \) such that it contains the set \(\psi(A_r, 0) = f(A_r) \subset \bigcup_{m \geq 1} X_m \) and the diameter of \(\psi(A_r, s) \) is less than \(\frac{1}{2} \). From the construction of \(X \), it follows that \(\psi(A_r, s) \) is contained in \([0, 1] \times [0, 1]\). It follows that \(\psi(\{\theta\}, s) \subset [0, 1] \times [0, 1] \). Using \(B_r \) instead of \(A_r \), it follows that \(\psi(\{\theta\}, s) \subset [-1, 0] \times [-1, 0] \). Hence, \(\psi(\{\theta\}, s) = \{\theta\} \). This is a contradiction that completes the proof that \(C(X) \) is not \(g \)-contractible.

References