Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A continuum whose hyperspace of subcontinua is not $g$-contractible


Author: Alejandro Illanes
Journal: Proc. Amer. Math. Soc. 130 (2002), 2179-2182
MSC (2000): Primary 54B20
DOI: https://doi.org/10.1090/S0002-9939-02-06307-4
Published electronically: February 12, 2002
MathSciNet review: 1896056
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A topological space $Y$ is said to be $g$-contractible provided that there exists a continuous onto function $f:Y\rightarrow Y$ such that $f$ is homotopic to a constant function. Answering a question by Sam B. Nadler, Jr., in this paper we construct a metric continuum $Z$ such that its hyperspace of subcontinua $C(Z)$ is not $g$-contractible.


References [Enhancements On Off] (What's this?)

  • 1. D. P. Bellamy, The cone over the Cantor set - continuous maps from both directions, Proc. Topology Conference (Emory University, Atlanta, Ga., 1970), J. W. Rogers, Jr., ed., 8-25. MR 49:6190
  • 2. R. Engelking and A. Lelek, Cartesian products and continuous images, Colloq. Math. 8, (1961), 27-29. MR 24:A1115
  • 3. J. T. Goodykoontz, Jr., More on connectedness im kleinen and local connectedness in $C(X),$ Proc. Amer. Math. Soc. 65, (1977), 357-364. MR 56:9475
  • 4. I. Krzeminska and J. R. Prajs, A non-g-contractible uniformly path connected continuum, Topology Appl. 91, (1999), 151-158. MR 2000a:54044
  • 5. S. B. Nadler, Jr., Some problems concerning hyperspaces, Topology Conference (V. P. I. and S. U.), Lecture Notes in Math., vol. 375, Springer-Verlag, New York, 1974, R. F. Dickman, Jr. and P. Fletcher, ed., 190-197. MR 51:6692
  • 6. S. B. Nadler, Jr., Hyperspaces of Sets, A text with research questions, Pure and Applied Mathematics, A Series of Monographs and Textbooks, vol. 49, Marcel Dekker, Inc., New York, 1978. MR 58:18330
  • 7. S. B. Nadler, Jr., Continuum Theory, An introduction, Pure and Applied Mathematics, A Series of Monographs and Textbooks, vol. 158, Marcel Dekker, Inc., New York, 1992. MR 93m:54002

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 54B20

Retrieve articles in all journals with MSC (2000): 54B20


Additional Information

Alejandro Illanes
Affiliation: Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, México 04510, D.F. México
Email: illanes@matem.unam.mx

DOI: https://doi.org/10.1090/S0002-9939-02-06307-4
Keywords: Continuum, $g$-contractible, hyperspace
Received by editor(s): April 24, 2000
Received by editor(s) in revised form: February 19, 2001
Published electronically: February 12, 2002
Communicated by: Alan Dow
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society