Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the Hartogs-Bochner phenomenon for CR functions in $P_2(\mathbb{C})$

Authors: Roman Dwilewicz and Joël Merker
Journal: Proc. Amer. Math. Soc. 130 (2002), 1975-1980
MSC (2000): Primary 32V25; Secondary 32V10, 32V15, 32D15
Published electronically: February 27, 2002
MathSciNet review: 1896029
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $M$ be a compact, connected, $\mathcal{C}^2$-smooth and globally minimal hypersurface $M$ in $P_2(\mathbb{C})$ which divides the projective space into two connected parts $U^{+}$ and $U^{-}$. We prove that there exists a side, $U^-$ or $U^+$, such that every continuous CR function on $M$ extends holomorphically to this side. Our proof of this theorem is a simplification of a result originally due to F. Sarkis.

References [Enhancements On Off] (What's this?)

  • 1. Dominique Cerveau, Minimaux des feuilletages algébriques de 𝐶𝑃(𝑛), Ann. Inst. Fourier (Grenoble) 43 (1993), no. 5, 1535–1543 (French, with English and French summaries). MR 1275208
  • 2. Pierre Dolbeault and Gennadi Henkin, Chaînes holomorphes de bord donné dans 𝐶𝑃ⁿ, Bull. Soc. Math. France 125 (1997), no. 3, 383–445 (French, with English and French summaries). MR 1605457
  • 3. Leon Ehrenpreis, A new proof and an extension of Hartogs’ theorem, Bull. Amer. Math. Soc. 67 (1961), 507–509. MR 0131663, 10.1090/S0002-9904-1961-10661-7
  • 4. Bruno Fabre, Sur l’intersection d’une surface de Riemann avec des hypersurfaces algébriques, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 4, 371–376 (French, with English and French summaries). MR 1378515
  • 5. Étienne Ghys, Laminations par surfaces de Riemann, Dynamique et géométrie complexes (Lyon, 1997) Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, pp. ix, xi, 49–95 (French, with English and French summaries). MR 1760843
  • 6. Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523
  • 7. Reese Harvey, Holomorphic chains and their boundaries, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R. I., 1977, pp. 309–382. MR 0447619
  • 8. F. Reese Harvey and H. Blaine Lawson Jr., On boundaries of complex analytic varieties. I, Ann. of Math. (2) 102 (1975), no. 2, 223–290. MR 0425173
    F. Reese Harvey and H. Blaine Lawson Jr., On boundaries of complex analytic varieties. II, Ann. of Math. (2) 106 (1977), no. 2, 213–238. MR 0499285
  • 9. G. M. Henkin and J. Leiterer, Theory of functions on complex manifolds, Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], vol. 60, Akademie-Verlag, Berlin, 1984. MR 795028
  • 10. S. M. Ivashkovich, The Hartogs-type extension theorem for meromorphic maps into compact Kähler manifolds, Invent. Math. 109 (1992), no. 1, 47–54. MR 1168365, 10.1007/BF01232018
  • 11. Burglind Jöricke, Some remarks concerning holomorphically convex hulls and envelopes of holomorphy, Math. Z. 218 (1995), no. 1, 143–157. MR 1312583, 10.1007/BF02571894
  • 12. J. J. Kohn and Hugo Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2) 81 (1965), 451–472. MR 0177135
  • 13. Christine Laurent-Thiébaut, Phénomène de Hartogs-Bochner dans les variétés CR, Topics in complex analysis (Warsaw, 1992) Banach Center Publ., vol. 31, Polish Acad. Sci., Warsaw, 1995, pp. 233–247 (French). MR 1341392
  • 14. Alcides Lins Neto, A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 4, 1369–1385 (English, with English and French summaries). MR 1703092
  • 15. J. Merker, Global minimality of generic manifolds and holomorphic extendibility of CR functions, Internat. Math. Res. Notices 8 (1994), 329 ff., approx. 14 pp. (electronic). MR 1289578, 10.1155/S1073792894000383
  • 16. Frédéric Sarkis, CR-meromorphic extension and the nonembeddability of the Andreotti-Rossi CR structure in the projective space, Internat. J. Math. 10 (1999), no. 7, 897–915. MR 1728127, 10.1142/S0129167X99000380
  • 17. F. Sarkis, Problème de Plateau complexe dans les variétés kahlériennes. Preprint, 1999.
  • 18. Y.T. Siu, Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension $\geq 3$. Ann. Math. (2) 151 (2000), no. 3, 1217-1243. CMP 2000:17
  • 19. Akira Takeuchi, Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan 16 (1964), 159–181 (French). MR 0173789
  • 20. J.-M. Trépreau, Sur la propagation des singularités dans les variétés CR, Bull. Soc. Math. France 118 (1990), no. 4, 403–450 (French, with English summary). MR 1090408

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32V25, 32V10, 32V15, 32D15

Retrieve articles in all journals with MSC (2000): 32V25, 32V10, 32V15, 32D15

Additional Information

Roman Dwilewicz
Affiliation: Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, P.O. Box 137, 00-950 Warsaw, Poland

Joël Merker
Affiliation: Laboratoire d’Analyse, Topologie et Probabilités, Centre de Mathématiques et Informatique, UMR 6632, 39 rue Joliot Curie, F-13453 Marseille Cedex 13, France

Keywords: Smooth hypersurfaces of the complex projective space, holomorphic extension of CR functions, jump formula, global minimality, one-sided neighborhood
Received by editor(s): December 13, 2000
Published electronically: February 27, 2002
Additional Notes: This research was partially supported by a grant of the Polish Committee for Scientific Research KBN 2 PO3A 044 15 and by a grant from the French-Polish program “Polonium 1999”
Communicated by: Steven R. Bell
Article copyright: © Copyright 2002 American Mathematical Society