Maximal Betti numbers

Authors:
Marc Chardin, Vesselin Gasharov and Irena Peeva

Journal:
Proc. Amer. Math. Soc. **130** (2002), 1877-1880

MSC (2000):
Primary 13D02

DOI:
https://doi.org/10.1090/S0002-9939-02-06471-7

Published electronically:
February 4, 2002

MathSciNet review:
1896017

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide a short proof that the lexicographic ideal has the greatest Betti numbers among all graded ideals with a fixed Hilbert function.

**[Bi]**A. Bigatti: Upper bounds for the Betti numbers of a given Hilbert function,*Comm. Algebra***21**(1993), 2317-2334. MR**94c:13014****[AAH]**A. Aramova, L. Avramov, and J. Herzog: Resolutions of monomial ideals and cohomology over exterior algebras,*Trans. Amer. Math. Soc.***352**(2000), 579-594. MR**2000c:13021****[AHH]**A. Aramova, J. Herzog, and T. Hibi: Squarefree lexsegment ideals,*Math. Z.***228**(1998), 353-378. MR**99h:13013****[EPY]**D. Eisenbud, S. Popescu, and S. Yuzvinsky: Hyperplane arrangements cohomology and monomials in the exterior algebra, Trans. Amer. Math. Soc., to appear.**[EK]**S. Eliahou and M. Kervaire: Minimal resolutions of some monomial ideals,*J. Algebra***129**(1990), 1-25. MR**91b:13019****[Gr]**M. Green: Generic initial ideals, in*Six lectures on commutative algebra*, Birkhäuser, Progress in Mathematics**166**, (1998), 119-185. MR**99m:13040****[Hu]**H. Hulett: Maximum Betti numbers of homogeneous ideals with a given Hilbert function,*Comm. Algebra***21**(1993), 2335-2350. MR**94c:13015**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
13D02

Retrieve articles in all journals with MSC (2000): 13D02

Additional Information

**Marc Chardin**

Affiliation:
Institut de Mathématiques, UMR 7586 du CNRS, Université Pierre et Marie Curie, F-75252 Paris Cedex 05, France

**Vesselin Gasharov**

Affiliation:
Department of Mathematics, Cornell University, Ithaca, New York 14850

**Irena Peeva**

Affiliation:
Department of Mathematics, Cornell University, Ithaca, New York 14850

Address at time of publication:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395

DOI:
https://doi.org/10.1090/S0002-9939-02-06471-7

Received by editor(s):
June 1, 2000

Published electronically:
February 4, 2002

Communicated by:
Michael Stillman

Article copyright:
© Copyright 2002
American Mathematical Society