TWISTED HIGHER MOMENTS OF KLOOSTERMAN SUMS

CHUNLEI LIU

(Communicated by David E. Rohrlich)

Abstract. Let \(\chi \) be a nontrivial Dirichlet character modulo an odd prime \(p \).
Write
\[
S(a) = \sum_{x=1}^{p-1} e\left(\frac{x + ax^{-1}}{p}\right) = 2\sqrt{p}\cos\theta(a).
\]
We shall prove
\[
\frac{1}{p} \sum_{a=1}^{p-1} \chi(a) S(a)^2 = \chi(-1)g(\chi)^2 J(\chi, \chi^2)
\]
and, for complex \(\chi \),
\[
\left| \frac{1}{p} \sum_{a=1}^{p-1} \chi(a) \frac{\sin(k+1)\theta(a)}{\sin\theta(a)} \right| \leq c(k)\sqrt{p}, \quad k > 0,
\]
where \(c(k) \) is a constant depending only on \(k \).

1. Introduction

Let \(p \) be an odd prime. Write
\[
S(a) = \sum_{x=1}^{p-1} e\left(\frac{x + ax^{-1}}{p}\right).
\]
It is a Kloosterman sum. It is known that (\(\mathbb{I} \))
\[
\frac{1}{p} \sum_{a=1}^{p-1} S(a) = 1,
\]
\[
\frac{1}{p} \sum_{a=1}^{p-1} S(a)^2 = p^2 - p - 1,
\]
\[
\frac{1}{p} \sum_{a=1}^{p-1} S(a)^3 = \left(\frac{3}{p}\right)p^2 + 2p + 1
\]

Received by the editors September 19, 2000.
2000 Mathematics Subject Classification. Primary 11L05.
Key words and phrases. Kloosterman sum, Dirichlet character.
This research is supported by MCSEC and NSFC.

©2002 American Mathematical Society

1887
By A. Weil’s result ([W]), we may write
\[\cos \theta(a) = \frac{1}{2\sqrt{p}} S(a). \]

Katz ([K]) proved the following equidistribution result:
\[\left| \sum_{a=1}^{p-1} \sin(k+1)\theta(a) \sin \frac{\theta(a)}{\sin \theta(a)} \right| \leq \frac{k+1}{2} \sqrt{p}, \quad k \geq 1. \]

We may expect, for any Dirichlet character \(\chi \) to the modulus \(p \), that
\[\left| \sum_{a=1}^{p-1} \chi(a) \sin(k+1)\theta(a) \sin \frac{\theta(a)}{\sin \theta(a)} \right| \leq \frac{k+1}{2} \sqrt{p}, \quad k \geq 1. \]

D. H. and E. Lehmer ([L]) found empirically in 1952 and proved in 1959 that
\[\sum_{a=1}^{p-1} \left(\frac{a}{p} \right) \sin 4\theta(a) = 2\sqrt{p} (\frac{-1}{p}) (A^2/p - 1) \]
if \(p = A^2 + 3B^2, 3|(A + 1) \) and vanishes if \(3|(p + 1) \).

We shall prove

Theorem 1. If \(\chi \) is a nonquadratic Dirichlet character to the modulus \(p \), then
\[\left| \sum_{a=1}^{p-1} \chi(a) \sin(k+1)\theta(a) \sin \frac{\theta(a)}{\sin \theta(a)} \right| \leq c(k) \sqrt{p}, \quad k > 0, \]
where \(c(k) \) is a constant depending only on \(k \).

If \(k = 2 \), we can prove more.

Theorem 2.
\[\sum_{a=1}^{p-1} \chi(a) \frac{\sin 3\theta(a)}{\sin \theta(a)} = \frac{1}{p} \chi(-1) g(\chi)^2 J(\chi, \chi^2), \]
where \(\chi \) is a nontrivial Dirichlet character to the modulus \(p \),
\[g(\chi) = \sum_{x=1}^{p-1} \chi(x) e\left(\frac{x}{p} \right) \]
is a Gauss sum and
\[J(\chi_1, \chi_2) = \sum_{x=1}^{p-1} \chi_1(x) \chi_2(1 - x) \]
is a Jacobi sum.
Another form of Theorem 2 is
\[
\sum_{a=1}^{p-1} \chi(a)S(a)^2 = \chi(-1)g(\chi)^2 J(\chi, \chi^2),
\]
where \(\chi\) is a nontrivial Dirichlet character to the modulus \(p\). It is equivalent to
\[
(p - 1)S(a)^2 = p^2 - p - 1 + \sum_{\chi} \chi(-1)g(\chi)^2 J(\chi, \chi^2)\overline{\chi}(a),
\]
where \(\chi\) runs over all nontrivial Dirichlet characters to the modulus \(p\). So
\[
(p - 1)S(a)^2 = p^2 - p - 1 + \sum_{\chi} \chi(-1)g(\chi)^2 J(\chi, \chi^2)\overline{\chi}^2(a),
\]
where \(\chi\) runs over all nontrivial Dirichlet characters to the modulus \(p\). It implies
\[
\sum_{a=1}^{p-1} |\chi(a)S(a^2)|^2 \leq 2p^{3/2},
\]
where \(\chi\) is a nontrivial Dirichlet character to the modulus \(p\). That is a little sharper than
\[
\sum_{a=1}^{p-1} |\chi(a)S(a^2)|^2 \leq 4p^{3/2},
\]
which was proved for quadratic Dirichlet character \(\chi\) to the modulus \(p\), and conjectured for general nontrivial Dirichlet character \(\chi\) in [C] by Conrey and Iwaniec.

Remark. Theorems 1 and 2 generalize to the finite field case.

2. THE TWISTED SQUARE MOMENT

We now prove Theorem 2. Opening \(S(a)^2\), we get
\[
\sum_{a=1}^{p-1} \chi(a)S(a)^2 = \sum_{a=1}^{p-1} \chi(a) \sum_{x=1}^{p-1} \sum_{y=1}^{p-1} e\left(\frac{x + y}{p}\right) e\left(\frac{a(x^{-1} + y^{-1})}{p}\right).
\]
Summing over \(a\) first and applying
\[
\sum_{a=1}^{p-1} \chi(a)e\left(\frac{ax}{p}\right) = \overline{\chi}(x)g(\chi),
\]
we get
\[
\sum_{a=1}^{p-1} \chi(a)S(a)^2 = g(\chi) \sum_{x=1}^{p-1} \sum_{y=1}^{p-1} e\left(\frac{x + y}{p}\right) \overline{\chi}(x^{-1} + y^{-1}).
\]
A change of variable yields
\[
\sum_{a=1}^{p-1} \chi(a)S(a)^2 = g(\chi) \sum_{x=1}^{p-1} \sum_{y=1}^{p-1} e\left(\frac{x + xy}{p}\right) \overline{\chi}(x^{-1} + x^{-1}y^{-1}).
\]
Summing over \(x\) first and applying
\[
\sum_{a=1}^{p-1} \chi(a)e\left(\frac{ax}{p}\right) = \overline{\chi}(x)g(\chi)
\]
1890 CHUNLEI LIU

once more, we get
\[
\sum_{a=1}^{p-1} \chi(a)S(a)^2 = g(\chi)^2 \sum_{y=1}^{p-1} \chi(1 + y^{-1})\chi(1 + y)
\]
\[
= g(\chi)^2 \sum_{y=1}^{p-1} \chi(y)\chi^2(1 + y) = \chi(-1)g(\chi)^2 J(\chi, \chi^2).
\]

3. The twisted higher moments

We now prove Theorem 1. For \(q = p^m \), write
\[
S(a; q) = \sum_x e\left(\frac{tr(x + ax^{-1})}{p}\right) = 2\sqrt{q} \cos(\theta(\psi; q)),
\]
where \(x \) runs over all nonzero elements in \(\mathbb{F}_q \), and \(tr \) is the trace map from \(\mathbb{F}_q \) to \(\mathbb{F}_p \). Write
\[
T(\psi; q) = \sum_a \psi(a) \frac{\sin(k + 1)\theta(a; q)}{\sin\theta(a; q)},
\]
where \(a \) runs over all nonzero elements in \(\mathbb{F}_q \), and \(\psi \) is a multiplicative character of \(\mathbb{F}_q \). Write
\[
L(t) = \exp\left(\sum_{m \geq 1} T(\chi_m; p^m)t^m/m\right),
\]
where \(\chi_m \) is the lift of \(\chi \) from \(\mathbb{F}_p \) to \(\mathbb{F}_{p^m} \). According to B. Dwork ([Dw]), \(L(t) \) is a rational function
\[
L(t) = \prod_{v \in I}(1 - \alpha_v(\chi)t) \prod_{v \in J}(1 - \alpha_v(\chi)t)^{-1}.
\]
Equivalently,
\[
T(\chi_m; p^m) = -\sum_{v \in I} \alpha_v(\chi)^m + \sum_{v \in J} \alpha_v(\chi)^m.
\]
According to P. Deligne ([D]),
\[
|\alpha_v(\chi)| = p^{c_v/2}
\]
and the total number of \(\alpha_v(\chi) \) is bounded by a number \(c(k) \) depending only on \(k \).
We conclude that
\[
|\alpha_v(\chi)| \leq \sqrt{p},
\]
from which Theorem 2 follows. Otherwise, according to E. Bombieri’s arguments ([B]),
\[
|T(\chi_m; p^m)| > (1 - \varepsilon)p^m
\]
for infinitely many \(m \). Then
\[
|T(\chi_m; p^m)|^2 + |T(\chi_m; p^m)|^2 > 2(1 - \varepsilon)^2 p^{2m}
\]
for infinitely many \(m \), contradicting the following lemma.
Lemma 3.

\[\frac{1}{q-1} \sum_{\psi} |T(\psi; q)|^2 = q + O(\sqrt{q}), \]

where \(\psi \) runs over all multiplicative characters of \(\mathbb{F}_q \).

Indeed, we have

\[\frac{1}{q-1} \sum_{\psi} |T(\psi; q)|^2 = \sum_a \left(\frac{\sin(k+1)\theta(a; q)}{\sin \theta(a; q)} \right)^2. \]

As

\[\left(\frac{\sin(k+1)\theta}{\sin \theta} \right)^2 = 1 + \sum_{1 \leq i \leq 2k} \frac{\sin(l+1)\theta}{\sin \theta}, \]

we have

\[\frac{1}{q-1} \sum_{\psi} |T(\psi; q)|^2 = q - 1 + \sum_{1 \leq i \leq 2k} c_l \sum_a \frac{\sin(l+1)\theta(a; q)}{\sin \theta(a; q)}. \]

The lemma now follows from N. Katz’s equidistribution result ([K])

\[\left| \sum_a \frac{\sin(l+1)\theta(a; q)}{\sin \theta(a; q)} \right| \leq \frac{l+1}{2} \sqrt{q}. \]

Acknowledgment

The author thanks J. Conrey and H. Iwaniec for offering their manuscript [C], N. Katz for sending his red book [K], Chengbiao Pan for his constant support, Kezheng Li for his willingness to help, Hongbin Yu and Fei Xu for informing the author about Lehmers’ results, and Chungang Ji for exciting discussions.

Added in proof

From Theorem 1 one can deduce that, for every odd integer \(m \),

\[\left| \sum_{a=1}^{p-1} \frac{\sin(k+1)\theta(a^m)}{\sin \theta(a^m)} \right| \leq (m, p-1)c(k)\sqrt{p}, \quad k > 0, \]

where \(c(k) \) is the constant in Theorem 1. That is, for every fixed odd integer \(m \), the angles \(\theta(a^m) \), for \(1 \leq a \leq p-1 \), are equidistributed with respect to the Sato-Tate measure as \(p \) goes to infinity.

References

Morningside Center of Mathematics, Chinese Academy of Science, Beijing 100080, People’s Republic of China

Current address: P. O. Box 1001-745, Zhengzhou 450002, People’s Republic of China

E-mail address: chunleiliu@mail.china.com

URL: http://edtrchunleiliu.at.china.com