On the stability of the standard Riemann semigroup

Authors:
Stefano Bianchini and Rinaldo M. Colombo

Journal:
Proc. Amer. Math. Soc. **130** (2002), 1961-1973

MSC (2000):
Primary 35L65, 76N10

Published electronically:
February 27, 2002

MathSciNet review:
1896028

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the dependence of the entropic solution of a hyperbolic system of conservation laws

on the flux function . We prove that the solution is Lipschitz continuous w.r.t. the norm of the derivative of the perturbation of . We apply this result to prove the convergence of the solution of the relativistic Euler equation to the classical limit.

**1.**F. Ancona, A. Marson,*Well posedness for general systems of conservation laws*, preprint.**2.**Paolo Baiti and Alberto Bressan,*The semigroup generated by a Temple class system with large data*, Differential Integral Equations**10**(1997), no. 3, 401–418. MR**1744853****3.**Stefano Bianchini,*On the shift differentiability of the flow generated by a hyperbolic system of conservation laws*, Discrete Contin. Dynam. Systems**6**(2000), no. 2, 329–350. MR**1739381**, 10.3934/dcds.2000.6.329**4.**Alberto Bressan,*The unique limit of the Glimm scheme*, Arch. Rational Mech. Anal.**130**(1995), no. 3, 205–230. MR**1337114**, 10.1007/BF00392027**5.**A. Bressan,*On the Cauchy problem for nonlinear hyperbolic systems*, preprint S.I.S.S.A., 1998.**6.**A. Bressan, ``Hyperbolic Systems of Conservation Laws: the One Dimensional Cauchy Problem'', Oxford Univ. Press (2000).**7.**Alberto Bressan and Rinaldo M. Colombo,*The semigroup generated by 2×2 conservation laws*, Arch. Rational Mech. Anal.**133**(1995), no. 1, 1–75. MR**1367356**, 10.1007/BF00375350**8.**Alberto Bressan, Graziano Crasta, and Benedetto Piccoli,*Well-posedness of the Cauchy problem for 𝑛×𝑛 systems of conservation laws*, Mem. Amer. Math. Soc.**146**(2000), no. 694, viii+134. MR**1686652**, 10.1090/memo/0694**9.**F. Bouchut and B. Perthame,*Kružkov’s estimates for scalar conservation laws revisited*, Trans. Amer. Math. Soc.**350**(1998), no. 7, 2847–2870 (English, with English and French summaries). MR**1475677**, 10.1090/S0002-9947-98-02204-1**10.**Rinaldo M. Colombo and Nils H. Risebro,*Continuous dependence in the large for some equations of gas dynamics*, Comm. Partial Differential Equations**23**(1998), no. 9-10, 1693–1718. MR**1641709**, 10.1080/03605309808821397**11.**C. M. Dafermos,*Generalized characteristics in hyperbolic systems of conservation laws*, Arch. Rational Mech. Anal.**107**(1989), no. 2, 127–155. MR**996908**, 10.1007/BF00286497**12.**P. D. Lax,*Hyperbolic systems of conservation laws. II*, Comm. Pure Appl. Math.**10**(1957), 537–566. MR**0093653****13.**Tai Ping Liu,*The Riemann problem for general systems of conservation laws*, J. Differential Equations**18**(1975), 218–234. MR**0369939****14.**Lu Min and Seiji Ukai,*Non-relativistic global limits of weak solutions of the relativistic Euler equation*, J. Math. Kyoto Univ.**38**(1998), no. 3, 525–537. MR**1661165****15.**A. I. Panasyuk,*Quasidifferential equations in a metric space*, Differentsial′nye Uravneniya**21**(1985), no. 8, 1344–1353, 1468 (Russian). MR**806264****16.**Joel Smoller and Blake Temple,*Global solutions of the relativistic Euler equations*, Comm. Math. Phys.**156**(1993), no. 1, 67–99. MR**1234105****17.**A. H. Taub,*Relativistic Rankine-Hugoniot equations*, Physical Rev. (2)**74**(1948), 328–334. MR**0025834**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35L65,
76N10

Retrieve articles in all journals with MSC (2000): 35L65, 76N10

Additional Information

**Stefano Bianchini**

Affiliation:
Istituto per le Applicazioni del Calcolo, Viale del Policlinico 137, 00161 Roma, Italy

Email:
bianchin@iac.rm.cnr.it

**Rinaldo M. Colombo**

Affiliation:
Department of Mathematics, University of Brescia, Via Valotti 9, 25133 Brescia, Italy

Email:
rinaldo@ing.unibs.it

DOI:
http://dx.doi.org/10.1090/S0002-9939-02-06568-1

Keywords:
Hyperbolic systems,
conservation laws,
well posedness

Received by editor(s):
July 1, 2000

Published electronically:
February 27, 2002

Additional Notes:
We thank Alberto Bressan for useful discussions.

Communicated by:
Suncica Canic

Article copyright:
© Copyright 2002
American Mathematical Society