Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a local version of the Aleksandrov-Fenchel inequality for the quermassintegrals of a convex body


Authors: A. Giannopoulos, M. Hartzoulaki and G. Paouris
Journal: Proc. Amer. Math. Soc. 130 (2002), 2403-2412
MSC (1991): Primary 52A20; Secondary 52A39, 52A40
DOI: https://doi.org/10.1090/S0002-9939-02-06329-3
Published electronically: January 23, 2002
MathSciNet review: 1897466
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the analogue in the Brunn-Minkowski theory of the inequalities of Marcus-Lopes and Bergstrom about symmetric functions of positive reals and determinants of symmetric positive matrices respectively. We obtain a local version of the Aleksandrov-Fenchel inequality $W_i^2\geq W_{i-1}W_{i+1}$ which relates the quermassintegrals of a convex body $K$ to those of an arbitrary hyperplane projection of $K$. A consequence is the following fact: for any convex body $K$, for any $(n-1)$-dimensional subspace $E$ of ${\mathbb R}^n$ and any $t>0$,

\begin{displaymath}\frac{\vert P_E(K)+tD_E\vert}{\vert P_E(K)\vert}\leq\frac{\vert K+2tD_n\vert}{\vert K\vert},\end{displaymath}

where $D$ denotes the Euclidean unit ball and $\vert\cdot \vert$denotes volume in the appropriate dimension.


References [Enhancements On Off] (What's this?)

  • 1. H. Bergstrom, A triangle inequality for matrices, Den Elfte Skandinaviske Matematiker-kongress, Trondheim, 1949. Oslo: Johan Grundt Tanums Forlag 1952. MR 14:716e
  • 2. L. Berwald, Verallgemeinerung eines Mittelwertsatzes von J. Favard, für positive konkave Functionen, Acta Math. 79 (1947), 17-37. MR 9:13d
  • 3. E.F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag (1971). MR 33:236
  • 4. Yu.D. Burago and V.A. Zalgaller, Geometric Inequalities, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin-New York (1988). MR 89b:52020
  • 5. A. Dembo, T.M. Cover and J.A. Thomas, Information theoretic inequalities, IEEE Trans. Information Theory 37 (1991), 1501-1518. MR 92h:94005
  • 6. M. Fradelizi, A. Giannopoulos and M. Meyer, Some inequalities about mixed volumes, preprint.
  • 7. Ky Fan, Some inequalities concerning positive-definite hermitian matrices, Proc. Cambridge Phil. Soc. 51 (1955), 414-421. MR 17:935c
  • 8. L.H. Loomis and H. Whitney, An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc. 55 (1949), 961-962. MR 11:166d
  • 9. M. Marcus and L. Lopes, Inequalities for symmetric functions and Hermitian matrices, Canad. J. Math. 8 (1956), 524-531. MR 18:877b
  • 10. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, Cambridge (1993). MR 94d:52007
  • 11. R. Schneider, On the Aleksandrov-Fenchel inequality, Discrete Geometry and Convexity (eds. J.E. Goodman, E. Lutwak, J. Malkevitch and R. Pollack), Ann. New York Acad. Sci. 440 (1985), 132-141. MR 87c:52019

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 52A20, 52A39, 52A40

Retrieve articles in all journals with MSC (1991): 52A20, 52A39, 52A40


Additional Information

A. Giannopoulos
Affiliation: Department of Mathematics, University of Crete, Iraklion, Greece
Email: apostolo@math.uch.gr

M. Hartzoulaki
Affiliation: Department of Mathematics, University of Crete, Iraklion, Greece
Email: hmarian@math.uch.gr

G. Paouris
Affiliation: Department of Mathematics, University of Crete, Iraklion, Greece
Email: paouris@math.uch.gr

DOI: https://doi.org/10.1090/S0002-9939-02-06329-3
Keywords: Mixed volumes, Aleksandrov-Fenchel inequality
Received by editor(s): December 20, 2000
Received by editor(s) in revised form: March 16, 2001
Published electronically: January 23, 2002
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society