Absolutely continuous Jacobi operators

Author:
Steen Pedersen

Journal:
Proc. Amer. Math. Soc. **130** (2002), 2369-2376

MSC (2000):
Primary 33C45, 39A70; Secondary 47A10, 47B39

DOI:
https://doi.org/10.1090/S0002-9939-02-06339-6

Published electronically:
February 4, 2002

MathSciNet review:
1897462

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show (among other results) that a symmetric Jacobi matrix whose diagonal is the zero sequence and whose super-diagonal satisfies , and has purely absolutely continuous spectrum when considered as a self-adjoint operator on .

**[Ber68]**Ju.M. Berezanskii,*Expansion in Eigenfunctions of Selfadjoint Operators*, Translations of Mathematical Monographs, vol. 17, Amer. Math. Soc., Providence, RI, 1968. MR**36:5768****[CFKS87]**H.L. Cycon, R.G. Froese, W. Kirsch, and B. Simon,*Schrödinger operators and applications to quantum mechanichs and global geometry*, Texts and Monographs in Physics, Springer-Verlag, Berlin-New York, 1987. MR**88g:35003****[Cla96]**S.L. Clark,*A spectral analysis for self-adjoint operators generated by a class of second-order difference equations*, J. Math. Anal. Appl.**197**(1996), 267-285. MR**96m:47061****[dMS98]**A. Boutet de Monvel and J. Sahbani,*On the spectral properties of the spin-boson Hamiltonians*, Lett. Math. Phys.**44**(1998), 23-33. MR**2000m:81047****[dMS99]**A. Boutet de Monvel and J. Sahbani,*On the spectral properties of discrete Schrödinger operators: the multi-dimensional case*, Rev. Math. Phys.**11**(1999), 1061-1078. MR**2000j:47064****[DP95]**J. Dombrowski and S. Pedersen,*Orthogonal polynomials, spectral measures and absolute continuity*, J. Comput. Appl. Math.**65**(1995), 115-124. MR**97b:47027****[DP97]**J. Dombrowski and S. Pedersen,*Spectral measures and Jacobi matrices related to Laguerre type systems of orthogonal polynomials*, Constr. Approx.**13**(1997), 421-433. MR**98e:47041****[DP98]**J. Dombrowski and S. Pedersen,*Absolute continuity for Jacobi matrices with constant row sums*, J. Math. Anal. Appl., to appear.**[HL78]**D.B. Hinton and R.T. Lewis,*Spectral analysis of second-order difference equations*, J. Math. Anal. Appl.**63**(1978), 421-438. MR**58:29512****[JL99]**S. Jitomirskaya and Y. Last,*Power-law subordinacy and singular spectra I. Half-line operators*, Acta Math.**183**(1999), 171-189. MR**2001a:47033****[JM00]**J. Janas and M. Moszynski,*The alternative approaches to the absolute continuity of Jacobi matrices with monotonic weights*, Integral Equations Operator Theory, to appear.**[JN99a]**J. Janas and S. Naboko,*Jacobi matrices with power-like weights - grouping in blocks approach*, J. Funct. Anal.**166**(1999), 218-243. MR**2000k:47032****[JN99b]**J. Janas and S. Naboko,*Multitreshold spectral phase transition examples in a class of unbounded Jacobi matrices*, Recent advances in operator theory (Groningen, 1998), 267-285. Oper. Theory Adv. Appl., 124, Birkhäuser, Basel, 2001.**[KL00]**A. Kiselev and Y. Last,*Solutions, spectrum and dynamics for Schrödinger operators on infinite domains*, Duke Math. J.**102**(2000), 125-150. CMP**2000:09****[LS99]**Y. Last and B. Simon,*Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators*, Invent. Math.**135**(1999), 329-367. MR**2000f:47060****[Mou81]**E. Mourre,*Absence of singular continuous spectrum for certain selfadjoint operators*, Commun. Math. Phys.**78**(1981), 391-408. MR**82c:47030****[Put67]**C.R. Putnam,*Commutation Properties of Hilbert Space Operators and Related Topics*, Ergebnisse der Math., vol. 36, Springer-Verlag, Berlin, 1967. MR**36:707****[Tes00]**G. Teschl,*Jacobi Operators and Completely Integrable Nonlinear Latices*, Mathematical Surveys and Monograhps, vol. 72, Amer. Math. Soc., Providence, RI, 2000. MR**2001b:39019**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
33C45,
39A70,
47A10,
47B39

Retrieve articles in all journals with MSC (2000): 33C45, 39A70, 47A10, 47B39

Additional Information

**Steen Pedersen**

Affiliation:
Department of Mathematics, Wright State University, Dayton, Ohio 45435

Email:
steen@math.wright.edu

DOI:
https://doi.org/10.1090/S0002-9939-02-06339-6

Keywords:
Orthogonal polynomials,
weighted shift,
absolute continuity,
Jacobi matrix

Received by editor(s):
September 1, 2000

Received by editor(s) in revised form:
March 21, 2001

Published electronically:
February 4, 2002

Communicated by:
David R. Larson

Article copyright:
© Copyright 2002
American Mathematical Society