Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On individual stability of $C_0-$semigroups

Author: J. M. A. M. van Neerven
Journal: Proc. Amer. Math. Soc. 130 (2002), 2325-2333
MSC (2000): Primary 47D03; Secondary 47D06
Published electronically: February 4, 2002
MathSciNet review: 1896416
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\{T(t)\}_{t\ge 0}$ be a $C_0$-semigroup with generator $A$ on a Banach space $X$. Let $x_0\in X$ be a fixed element. We prove the following individual stability results.

(i) Suppose $X$ is an ordered Banach space with weakly normal closed cone $C$and assume there exists $t_0\ge 0$ such that $T(t)x_0\in C$ for all $t\ge t_0$. If the local resolvent $\lambda\mapsto ( \lambda-A)^{-1} x_0$ admits a bounded analytic extension to the right half-plane $\{\operatorname{Re}\lambda>0\}$, then for all $\mu\in\varrho(A)$ and $x^\ast\in X^\ast$ we have

\begin{displaymath}\lim_{t\to\infty} \bigl\langle T(t)(\mu-A)^{-1} x_0, x^\ast\bigr\rangle\, =\, 0.\end{displaymath}

(ii) Suppose $E$ is a rearrangement invariant Banach function space over $[0,\infty)$ with order continuous norm. If $x_0^\ast\in X^\ast$ is an element such that $t\mapsto \langle T(t)x_0, x_0^\ast\rangle$ defines an element of $E$, then for all $\mu\in\varrho(A)$ and $\beta\ge 1$ we have

\begin{displaymath}\lim_{t\to\infty} \bigl\langle T(t)(\mu-A)^{-\beta} x_0, x_0^\ast\bigr\rangle\, =\, 0.\end{displaymath}

References [Enhancements On Off] (What's this?)

  • 1. W. Arendt, Spectrum and growth of positive semigroups, in: G. Ferreyra, G. Ruiz Goldstein and F. Neubrander (eds): Evolution Equations, Lecture Notes in Pure and Appl. Math., vol. 168, Marcel Dekker Inc., 1995, pp. 21-28. MR 95m:47062
  • 2. C.J.K. Batty, Bounded Laplace transforms, primitives and semigroup orbits, Arch. Math., to appear.
  • 3. C.J.K. Batty and M. Blake, Convergence of Laplace integrals, C. R. Acad. Sci. Paris, Série I 330 (2000), 71-75. MR 2001e:44001
  • 4. C.J.K. Batty, R. Chill and J.M.A.M. van Neerven, Asymptotic behaviour of $C_0-$semigroups with bounded local resolvents, Math. Nachr. 219 (2000), 65-83. CMP 2001:03
  • 5. L. Gearhart, Spectral theory for contraction semigroups on Hilbert spaces, Trans. Amer. Math. Soc. 236 (1978), 385-394. MR 57:1191
  • 6. I.W. Herbst, The spectrum of Hilbert space semigroups, J. Operator Theory 10 (1983), 87-94. MR 84m:47052
  • 7. S.-Z. Huang and J.M.A.M. van Neerven, $B-$convexity, the analytic Radon-Nikodym property, and individual stability of $C_0-$semigroups, J. Math. Anal. Appl. 231 (1999), 1-20. MR 2000i:47077
  • 8. S.G. Krein, Yu. I. Petunin, and E.M. Semenov, Interpolation of Linear Operators, Translations of Mathematical Monographs, vol. 54, Amer. Math. Soc., Providence, R.I., 1982. MR 84j:46103
  • 9. J.M.A.M. van Neerven, Individual stability of $C_0-$semigroups and uniform boundedness of local resolvent, Semigroup Forum 53 (1996), 155-161. MR 97h:47036
  • 10. J.M.A.M. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Operator Theory: Adv. and Appl., vol. 88, Birkhäuser Verlag, Basel-Boston-Berlin, 1996. MR 98d:47001
  • 11. J. Prüss, On the spectrum of $C_0-$semigroups, Trans. Amer. Math. Soc. 284 (1984), 847-857. MR 85f:47044
  • 12. H.H. Schaefer, Topological Vector Spaces, 3rd printing, Springer-Verlag, Berlin-Heidelberg-New York, 1971. MR 49:7722
  • 13. D.V. Widder, The Laplace Transform, 8th print, Princeton University Press, Princeton, 1972.
  • 14. L. Weis and V. Wrobel, Asymptotic behavior of $C_0-$semigroups in Banach spaces, Proc. Amer. Math. Soc. 124 (1996), 3663-3671. MR 97b:47041
  • 15. A.C. Zaanen, Integration, North Holland, Amsterdam, 1967. MR 36:5286
  • 16. J. Zabczyk, A note on $C_0-$semigroups, Bull. Acad. Polon. Sci. 23 (1975), 895-898. MR 52:4025

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47D03, 47D06

Retrieve articles in all journals with MSC (2000): 47D03, 47D06

Additional Information

J. M. A. M. van Neerven
Affiliation: Department of Applied Mathematical Analysis, Technical University of Delft, P.O. Box 5031, 2600 GA Delft, The Netherlands

Keywords: Individual stability, bounded local resolvent, weakly normal cone, positive semigroup, $C_0-$semigroup, rearrangement invariant, Banach function space, order continuous norm
Received by editor(s): April 5, 2000
Received by editor(s) in revised form: March 1, 2001
Published electronically: February 4, 2002
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society