Varieties generated by countably compact Abelian groups

Authors:
Dikran Dikranjan and Michael Tkachenko

Journal:
Proc. Amer. Math. Soc. **130** (2002), 2487-2496

MSC (1991):
Primary 22A05, 22B05, 54D25, 54H11; Secondary 54A35, 54B30, 54D30, 54H13

DOI:
https://doi.org/10.1090/S0002-9939-02-06354-2

Published electronically:
February 4, 2002

MathSciNet review:
1897476

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove under the assumption of Martin's Axiom that every precompact Abelian group of size belongs to the smallest class of groups that contains all Abelian countably compact groups and is closed under direct products, taking closed subgroups and continuous isomorphic images.

**[Ar1]**A.V. Arhangel'skii, Cardinal invariants of topological groups. Embeddings and condensations,*Soviet Math. Dokl.***20**(1979), 783-787. Russian original in:*Dokl. AN SSSR***247**(1979), 779-782. MR**80m:54005****[Ar2]**A.V. Arhangel'skii, Every topological group is a quotient group of a zero-dimensional topological group,*Dokl. AN SSSR***258**(1981), 1037-1040 (*in Russian*). MR**83e:22002****[CM]**W.W. Comfort and J. van Mill, On the existence of free topological groups,*Topology Appl.***29**(1988), 245-265. MR**90e:22001****[CR]**W.W. Comfort and K.A. Ross, Pseudocompactness and uniform continuity in topological groups,*Pacific J. Math.***16**(1966), 483-496. MR**34:7699****[D]**D. Dikranjan, Quotients of zero-dimensional precompact abelian groups,*Topology Appl.***86**(1998), no. 1, 47-62. MR**99e:54028****[DPS]**D. Dikranjan, I. Prodanov and L. Stoyanov,*Topological groups (Characters, Dualities and Minimal group topologies).*Marcel Dekker, Inc., New York-Basel, 1990. MR**91e:22001****[DT1]**D. Dikranjan and M.G Tkachenko, Sequentially complete groups: dimension and minimality,*J. Pure Appl. Algebra***157**(2001), 215-239. MR**2001m:22002****[DT2]**D. Dikranjan and M.G. Tkachenko, Sequential completeness of quotient groups,*Bull. Austral. Math. Soc.***61**(2000), 129-151. CMP**2001:10****[DT3]**D. Dikranjan and M.G. Tkachenko, Weakly complete free topological groups,*Topology Appl.***112**(2001), no. 3, 259-287. MR**2001:11****[DT4]**D. Dikranjan and M.G. Tkachenko, Algebraic structure of small countably compact Abelian groups, Forum Math, to appear.**[DTT]**D. Dikranjan, M.G. Tkachenko and V.V. Tkachuk, Topological groups with thin generating sets,*J. Pure Appl. Algebra,***145**(2000) 123-148. MR**2000m:22003****[Do1]**E. van Douwen, The product of two countably compact topological groups,*Trans. Amer. Math. Soc.***262**(1980), 417-427. MR**82b:22002****[Do2]**E. van Douwen, The maximal totally bounded group topology on and the biggest minimal -space for Abelian groups ,*Topology Appl.***34**(1990), 69-91. MR**91d:54044****[Flo]**P. Flor, Zur Bohr-Konvergenz von Folgen,*Math. Scand.***23**(1968), 169-170. MR**40:4685****[Fuc]**L. Fuchs,*Infinite Abelian groups*, Vol. I, Academic Press, New York, 1970. MR**41:333****[HJ]**A. Hajnal and I. Juhász, A normal separable group need not be Lindelöf,*Gen. Topol. Appl.***6**(1976), 199-205. MR**55:4088****[HR]**E. Hewitt and K. Ross, Abstract Harmonic Analysis I (Springer-Verlag, Berlin-Göttingen-Heidelberg 1979). MR**81k:43001****[HM]**K. Hart and J.van Mill, A countably compact group such that is not countably compact,*Trans. Amer. Math. Soc.***323**(1991), 811-821. MR**91e:54025****[Juh]**I. Juhász,*Cardinal functions in Topology,*Math. Centre Tracts 34, Amsterdam 1971. MR**49:4778****[Kuz]**V. Kuz'minov, On a hypothesis of P.S. Alexandrov in the theory of topological groups,*Doklady Akad. Nauk SSSR***125**(1959), 727-729 (*in Russian*). MR**21:3506****[Mo1]**S.A. Morris, Varieties of topological groups,*Bull. Austral. Math. Soc.***1**(1969), 145-160. MR**41:3655****[Mo2]**S.A. Morris, Varieties of topological groups. A survey.*Colloq. Math.***46**(1982), 147-165. MR**84e:22005****[Sha]**D. Shakhmatov, Imbeddings into topological groups preserving dimensions,*Topology Appl.***36**(1990), 181-204. MR**91i:54028****[Tay]**W. Taylor, Varieties of topological algebras,*J. Austral. Math. Soc.***23**(1977), 207-241. MR**56:5392****[Tk]**M.G. Tkachenko, Introduction to topological groups,*Topology Appl.***86**(1998), 179-231. MR**99b:54064****[TY]**M.G. Tkachenko and Iv. Yaschenko, Independent group topologies on Abelian groups,*Topology Appl.*, to appear.**[To1]**A.H. Tomita, On finite powers of countably compact groups,*Comment. Math. Univ. Carolin.***37**(1996), no. 3, 617-626. MR**98a:54033****[To2]**A.H. Tomita, A group under whose square is countably compact but whose cube is not,*Topology Appl.***91**(1999), 91-104. MR**2000d:54039**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
22A05,
22B05,
54D25,
54H11,
54A35,
54B30,
54D30,
54H13

Retrieve articles in all journals with MSC (1991): 22A05, 22B05, 54D25, 54H11, 54A35, 54B30, 54D30, 54H13

Additional Information

**Dikran Dikranjan**

Affiliation:
Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy

Email:
dikranja@dimi.uniud.it

**Michael Tkachenko**

Affiliation:
Departamento de Matemáticas, Universidad Autónoma Metropolitana, México

Email:
mich@xanum.uam.mx

DOI:
https://doi.org/10.1090/S0002-9939-02-06354-2

Keywords:
Countably compact,
precompact,
sequentially complete,
variety of topological groups,
Martin's Axiom

Received by editor(s):
February 4, 2000

Received by editor(s) in revised form:
March 21, 2001

Published electronically:
February 4, 2002

Additional Notes:
The first author was partially supported by Research Grant of the Italian MURST in the framework of the project “Nuove prospettive nella teoria degli anelli, dei moduli e dei gruppi abeliani" 2000

The second author was partially supported by the Mexican National Council of Sciences and Technology (CONACyT), grant no. 400200-5-3012PE. He also thanks the hosts for the hospitality and generous support during his visit to the Università di Udine, Italy in December, 1999

Communicated by:
Alan Dow

Article copyright:
© Copyright 2002
American Mathematical Society