Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Perturbations of surjective convolution operators


Authors: C. Fernández, A. Galbis and D. Jornet
Journal: Proc. Amer. Math. Soc. 130 (2002), 2377-2381
MSC (2000): Primary 46F05; Secondary 46F10.
DOI: https://doi.org/10.1090/S0002-9939-02-06359-1
Published electronically: February 12, 2002
MathSciNet review: 1897463
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mu_1$ and $\mu_2$ be (ultra)distributions with compact support which have disjoint singular supports. We assume that the convolution operator $f\, \rightarrow \, \mu_1 * f$ is surjective when it acts on a space of functions or (ultra)distribu- tions, and we investigate whether the perturbed convolution operator $f\rightarrow$ $(\mu_1 + \mu_2)* f$ is surjective. In particular we solve in the negative a question asked by Abramczuk in 1984.


References [Enhancements On Off] (What's this?)

  • 1. W. Abramczuk, A class of surjective convolution operators, Pacific J. Math. 110 (1984) 1-7. MR 85k:46042
  • 2. J. Bonet, A. Galbis, R. Meise, On the range of convolution operators on non-quasianalytic ultradifferentiable functions, Studia Math. 126 (1997) 171-198. MR 99a:46071
  • 3. R. Braun, R. Meise, B.A. Taylor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990) 206-237. MR 91h:46072
  • 4. R. Braun, R. Meise, D. Vogt, Existence of fundamental solutions and surjectivity of convolution operators on classes of ultradifferentiable functions, Proc. London Math. Soc. 61 (1990) 344-370. MR 91i:46038
  • 5. L. Ehrenpreis, Solutions of some problems of division. Part IV, Amer. J. Math. 82 (1960) 522-588. MR 22:9848
  • 6. L. Ehrenpreis, P. Malliavin, Invertible operators and interpolation in $\mathcal{AU}$ spaces, J. Math. Pures et Appl. 53 (1974) 165-182. MR 53:6316
  • 7. L. Hörmander, On the range of convolution operators, Ann. Math. 76 (1962) 148-170. MR 25:5379
  • 8. L. Hörmander, Supports and singular supports of convolutions, Acta Math. 110 (1963) 279-302. MR 27:4070

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46F05, 46F10.

Retrieve articles in all journals with MSC (2000): 46F05, 46F10.


Additional Information

C. Fernández
Affiliation: Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, E-46100 Burjassot (Valencia), Spain
Email: Carmen.Fdez-Rosell@uv.es

A. Galbis
Affiliation: Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, E-46100 Burjassot (Valencia), Spain
Email: Antonio.Galbis@uv.es

D. Jornet
Affiliation: Departamento de Matemática Aplicada, E.T.S. Arquitectura, Universidad Politéc- nica de Valencia, Camino de Vera, E-46071 Valencia, Spain
Email: dajorca@mat.upv.es

DOI: https://doi.org/10.1090/S0002-9939-02-06359-1
Keywords: Convolution operator, slowly decreasing, ultradistributions.
Received by editor(s): July 24, 2000
Received by editor(s) in revised form: March 22, 2001
Published electronically: February 12, 2002
Additional Notes: This work was completed with the support of DGESIC under Proyecto PB97-0333.
The third author was also supported by Ministerio de Educación y Cultura, grant FP98 48285420.
The authors want to express their gratitude to the referee for helpful suggestions.
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society