Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Wigner's theorem in Hilbert $C^*$-modules over $C^*$-algebras of compact operators


Authors: Damir Bakic and Boris Guljas
Journal: Proc. Amer. Math. Soc. 130 (2002), 2343-2349
MSC (1991): Primary 46C05, 46C50; Secondary 39B42, 47J05
DOI: https://doi.org/10.1090/S0002-9939-02-06426-2
Published electronically: March 8, 2002
MathSciNet review: 1897459
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $W$ be a Hilbert $C^*$-module over the $C^*$-algebra $\mathcal{A}\not = \boldsymbol{\mathit{C}}$of all compact operators on a Hilbert space. It is proved that any function $T: W \rightarrow W$ which preserves the absolute value of the ${\mathcal A}$-valued inner product is of the form $Tv=\varphi(v)Uv,\, v \in W$, where $\varphi$ is a phase function and $U$ is an ${\mathcal A}$-linear isometry. The result generalizes Molnár's extension of Wigner's classical unitary-antiunitary theorem.


References [Enhancements On Off] (What's this?)

  • 1. W.B. Arveson, An invitation to $C^*$-algebras, GTM 39, Springer Verlag, Berlin, 1976. MR 58:23621
  • 2. D. Bakic, B. Guljas, Operators on Hilbert $H^*$-modules, accepted for publication in the Journal of Operator Theory.
  • 3. D. Bakic, B. Guljas, Hilbert $C^*$-modules over $C^*$-algebras of compact operators, accepted for publication in Acta Sci. Math. (Szeged).
  • 4. M. Cabrera, J. Martínez, A. Rodríguez, Hilbert modules revisited: Orthonormal bases and Hilbert-Schmidt operators, Glasgow Math. J. 37 (1995), 45-54. MR 96c:46051
  • 5. M. Frank, D. R. Larson, Frames in Hilbert $C^*$-modules and $C^*$-algebras, preprint, University of Houston, Houston, and Texas A&M University, College Station, Texas, USA, 1998.
  • 6. I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75(1953), 839-853. MR 15:327f
  • 7. C. Lance, Hilbert $C^*$-modules, London Mat. Soc. Lecture Notes Series, 210, Cambridge University Press, Cambridge, 1995.
  • 8. L. Molnár, An algebraic approach to Wigner's unitary-antiunitary theorem, J. Austral. Math. Soc. 65(1998), 354-369. MR 99k:46031
  • 9. L. Molnár, A generalization of Wigner's unitary-antiunitary theorem to Hilbert modules, J. Math. Phys. 40(1999), 5544-5554. MR 2000j:46112
  • 10. W. Paschke, Inner product modules over $B^*$-algebras, Trans. Amer. Math. Soc. 182(1973), 443-468. MR 50:8087
  • 11. J. Rätz, On Wigner's theorem: remarks, complements, comments and corollaries, Aequationes Math. 52(1996), 1-9. MR 98b:39022
  • 12. M.A. Rieffel, Induced representations of $C^*$-algebras, Advances in Math. 13(1974), 176-257. MR 50:5489
  • 13. N.E. Wegge-Olsen, K-theory and $C^*$-algebras - a friendly approach, Oxford University Press, Oxford, 1993. MR 95c:46116
  • 14. E. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren, Vieweg, Braunschweig, 1931. MR 6:39g (reprint)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46C05, 46C50, 39B42, 47J05

Retrieve articles in all journals with MSC (1991): 46C05, 46C50, 39B42, 47J05


Additional Information

Damir Bakic
Affiliation: Department of Mathematics, University of Zagreb, Bijenička c. 30, 10000 Zagreb, Croatia
Email: bakic@math.hr

Boris Guljas
Affiliation: Department of Mathematics, University of Zagreb, Bijenička c. 30, 10000 Zagreb, Croatia
Email: guljas@math.hr

DOI: https://doi.org/10.1090/S0002-9939-02-06426-2
Keywords: $C^*$-algebra, Hilbert $C^*$-module, compact operator, Wigner's theorem
Received by editor(s): October 2, 2000
Received by editor(s) in revised form: March 12, 2001
Published electronically: March 8, 2002
Communicated by: David R. Larson
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society