ON THE CELLULAR DECOMPOSITION
OF THE EXCEPTIONAL LIE GROUP G_2

MAMORU MIMURA AND TETSU NISHIMOTO

(Communicated by Paul Goerss)

Abstract. The present note is to give a cellular decomposition of the compact
connected exceptional Lie group G_2.

1. Introduction

Let us denote by G_2 the compact connected exceptional Lie group of rank 2. By
definition G_2 is the automorphism group $\text{Aut}(\mathfrak{C})$, where \mathfrak{C} is the Cayley algebra. It
has been long known that G_2 has the homotopy type of
$$S^3 \cup e^5 \cup e^6 \cup e^8 \cup e^9 \cup e^{11} \cup e^{14}.$$ The purpose of the present note is to give a cellular decomposition of G_2:
$$G_2 = S^3 \cup e^5 \cup e^6 \cup e^8 \cup e^9 \cup e^{11} \cup e^{14}.$$

2. Preliminary

Let us recall known results on G_2 which will be needed later.
The Cayley algebra \mathfrak{C} is isomorphic to \mathbb{R}^8 as an \mathbb{R}-module and we denote its basis
by $\{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$. Notice that the multiplication is not associative.
The element e_0 is the unit of the algebra which we denote by 1. The multiplication
of the remaining basis is given in the following diagram:

\[\begin{array}{c}
\ast \\
\ast
\end{array} \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Then the exceptional Lie group G_2 is defined to be

$$G_2 = \{ g \in SO(8) \mid g(x)g(y) = g(xy), x, y \in \mathfrak{C} \} = \text{Aut}(\mathfrak{C}).$$

Since $g(1) = 1$ for any $g \in G_2$, we may regard G_2 as a subgroup of $SO(7)$. So from now on, we express an element of G_2 as that of $SO(7)$. The subgroup of elements in G_2 fixing e_1 is known to be isomorphic to $SU(3)$. The subgroup of elements in G_2 fixing e_1 and e_2 is known to be isomorphic to $SU(2)$. Thus we regard $SU(3)$ and $SU(2)$ as subgroups of G_2. Let S^6 be the unit sphere of \mathbb{R}^7 whose basis is $\{ e_i \mid 1 \leq i \leq 7 \}$ and S^5 be the unit sphere of \mathbb{R}^6 whose basis is $\{ e_i \mid 2 \leq i \leq 7 \}$. Then there are two principal fiber bundles over them:

$$SU(3) \longrightarrow G_2 \underset{p_1}{\longrightarrow} S^6,$$

$$SU(2) \longrightarrow SU(3) \underset{p_2}{\longrightarrow} S^5,$$

where $p_i(g) = g(e_i)$ for $i = 1, 2$. Let H be the subgroup of G_2 defined by

$$H = G_2 \cap (SO(3) \oplus SO(4)).$$

Lemma 2.1. $hgh^{-1} \in SU(2)$ for any $h \in H$ and $g \in SU(2)$.

Proof. It is obvious, since $SU(2) = G_2 \cap \{1\} \oplus SO(4)$, where $\{1\}$ denotes the subgroup of $SO(3)$ consisting of the identity element.

In the remainder of the section, we will construct cells of G_2. Let D^i $(1 \leq i \leq 3)$ be the i-dimensional discs defined respectively by

\[
D^3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 \leq 1\}, \\
D^2 = \{(y_1, y_2) \in \mathbb{R}^2 \mid y_1^2 + y_2^2 \leq 1\}, \\
D^1 = \{z_1 \in \mathbb{R} \mid z_1^2 \leq 1\}.
\]

We define V^3, V^5 and V^6 as follows:

$$V^3 = D^3, \quad V^5 = D^3 \times D^2, \quad V^6 = D^3 \times D^2 \times D^1,$$

and put X, Y and Z as

$$X = \sqrt{1 - x_1^2 - x_2^2 - x_3^2}, \quad Y = \sqrt{1 - y_1^2 - y_2^2}, \quad Z = \sqrt{1 - z_1^2}.$$
We define three maps A, B, C respectively of D^i to G_2 for $1 \leq i \leq 3$ as follows:

$$A(x_1, x_2, x_3) = \begin{pmatrix} 1 & 1 & 1 \\ 1 - 2X^2 & -2x_1X & -2x_2X & -2x_3X \\ 2x_1X & 1 - 2X^2 & 2x_3X & -2x_2X \\ 2x_2X & -2x_3X & 1 - 2X^2 & 2x_1X \\ 2x_3X & 2x_2X & -2x_1X & 1 - 2X^2 \end{pmatrix},$$

$$B(y_1, y_2) = \begin{pmatrix} 1 & y_1 & y_2 & -Y & 0 \\ y_2 & y_1 & 0 & -Y & Y \\ Y & 0 & y_1 & y_2 & 0 \\ 0 & Y & -y_2 & y_1 & 1 \end{pmatrix},$$

$$C(z_1) = \begin{pmatrix} z_1 & 0 & -Z \\ 0 & 1 & 0 \\ Z & 0 & z_1 \\ 1 & z_1 & 0 & -Z \\ 0 & 1 & 0 \\ Z & 0 & z_1 \end{pmatrix},$$

where blanks consist of the zero element. After having prepared these definitions, we will construct some cells of G_2. Let φ_i be a map of V^i to G_2 for $i = 3, 5, 6$ defined respectively by

$$\varphi_3(x_1, x_2, x_3) = A(x_1, x_2, x_3),$$

$$\varphi_5(x_1, x_2, x_3, y_1, y_2) = B(y_1, y_2)A(x_1, x_2, x_3)B(y_1, y_2)^{-1},$$

$$\varphi_6(x_1, x_2, x_3, y_1, y_2, z_1) = C(z_1)B(y_1, y_2)A(x_1, x_2, x_3)B(y_1, y_2)^{-1}C(z_1)^{-1}.$$

We define eight cells e^j for $j = 0, 3, 5, 6, 8, 9, 11, 14$ as follows:

$$e^0 = \{1\}, \quad e^3 = \text{Im } \varphi_3, \quad e^5 = \text{Im } \varphi_5, \quad e^6 = \text{Im } \varphi_6, \quad e^8 = e^5 e^3, \quad e^9 = e^6 e^3, \quad e^{11} = e^6 e^5, \quad e^{14} = e^6 e^5 e^3.$$

We denote the boundary and the interior of a cell e^i simply by ∂e^i and by $\overline{e^i}$ respectively.

3. A cellular decomposition of $SU(3)$

Yokota [Y1, Y3] constructed a cellular decomposition of $SU(n)$. In this section, we reconstruct a cellular decomposition of $SU(3)$ for our purpose, which is essentially the same as Yokota’s decomposition.

As is known, $SU(2)$ is homeomorphic to S^3, and hence $e^0 \cup e^3$ is a cellular decomposition of $SU(2)$.

Lemma 3.1. The composite map $p_2 \varphi_5 : (V^5, \partial V^5) \to (S^5, \{e_2\})$ is a relative homeomorphism.
Proof. We express the map \((p_2\varphi_5)_{|V^5 \setminus \partial V^5}\) as follows:

\[
\begin{pmatrix}
0 \\
a_2 \\
a_3 \\
a_4 \\
a_5 \\
a_6 \\
a_7
\end{pmatrix}
= p_2\varphi_5(x_1, x_2, x_3, y_1, y_2) = \begin{pmatrix}
0 \\
1 - 2X^2Y^2 \\
2x_1XY^2 \\
2Y(y_1X^2 - x_1y_2X) \\
-2Y(x_1y_1X + y_2X^2) \\
-2x_2XY \\
-2x_3XY
\end{pmatrix},
\]

and hence

\[
\begin{pmatrix}
0 \\
1 - a_2 \\
a_3 \\
a_4 \\
a_5 \\
a_6 \\
a_7
\end{pmatrix}
= 2XY \begin{pmatrix}
XY \\
x_1Y \\
y_1X - x_1y_2 \\
y_1X + y_2X \\
x_2 \\
x_3
\end{pmatrix}.
\]

Since \(X > 0, Y > 0\) and \(1 - a_2 > 0\), an easy calculation from the second component in the above equation gives the following equation:

\[
XY = \frac{\sqrt{1 - a_2}}{\sqrt{2}},
\]

from which we easily obtain

\[
x_2 = \frac{-a_6}{\sqrt{2(1 - a_2)}},
\]

\[
x_3 = \frac{-a_7}{\sqrt{2(1 - a_2)}}.
\]

Further we obtain two more equalities from the above equation:

\[
(1 - a_2)^2 + a_3^2 = 4X^2Y^4(x_1^2 + X^2),
\]

\[
a_4^2 + a_5^2 = 4X^2Y^2(y_1^2 + y_2^2)(x_1^2 + X^2) = 4X^2Y^2(1 - Y^2)(x_1^2 + X^2).
\]

Using these two equalities, we obtain

\[
Y^2 = \frac{(1 - a_2)^2 + a_3^2}{(1 - a_2)^2 + a_3^2 + a_4^2 + a_5^2}.
\]

It follows from (3.1) and (3.4) that

\[
X^2 = \frac{(1 - a_2)((1 - a_2)^2 + a_3^2 + a_4^2 + a_5^2)}{2((1 - a_2)^2 + a_3^2)}.
\]

It follows from (3.2), (3.3) and (3.5) that

\[
x_1^2 = \frac{a_2((1 - a_2)^2 + a_3^2 + a_4^2 + a_5^2)}{2(1 - a_2)((1 - a_2)^2 + a_3^2)}.
\]

Since \(Y > 0\), (3.4) implies that

\[
Y = \frac{\sqrt{(1 - a_2)^2 + a_3^2}}{\sqrt{(1 - a_2)^2 + a_3^2 + a_4^2 + a_5^2}}.
\]
Since \(X > 0 \), (3.5) implies that
\[
X = \frac{\sqrt{(1 - a_2)((1 - a_2)^2 + a_3^2 + a_4^2 + a_5^2)}}{2((1 - a_2)^2 + a_3^2)}.
\]
Since the signs of \(x_1 \) and \(a_3 \) are the same, (3.6) implies that
\[
x_1 = \frac{a_3\sqrt{(1 - a_2)^2 + a_3^2 + a_4^2 + a_5^2}}{2(1 - a_2)((1 - a_2)^2 + a_3^2 + a_4^2 + a_5^2)}.
\]
Now we determine \(y_2 \); we have
\[
a_4x_1 + a_5X = -2XY(x_1^2 + X^2)y_2.
\]
Substituting the equations (3.1), (3.8) and (3.9) in the above equation, we obtain
\[
y_2 = \frac{-a_3a_4 - (1 - a_2)a_5}{((1 - a_2)^2 + a_3^2)((1 - a_2)^2 + a_3^2 + a_4^2 + a_5^2)}.
\]
Finally we determine \(y_1 \); we have
\[
a_4X - a_5x_1 = 2XY(x_1^2 + X^2)y_1.
\]
Substituting the equations (3.1), (3.8) and (3.9) in the above equation, we obtain
\[
y_1 = \frac{(1 - a_2)a_4 - a_3a_5}{((1 - a_2)^2 + a_3^2)((1 - a_2)^2 + a_3^2 + a_4^2 + a_5^2)}.
\]
Thus we have expressed \(x_1, x_2, x_3, y_1, y_2 \) in terms of \(a_2, \ldots, a_7 \), that is, the inverse map has been constructed, which completes the proof. \(\square \)

Proposition 3.2. \(e^0 \cup e^3 \cup e^5 \cup e^8 \) is a cellular decomposition of \(SU(3) \).

Proof. First we will show that \(\mathcal{e}^i \cap \mathcal{e}^j = \emptyset \) if \(i \neq j \). We consider the following three cases:

1. For the case where \(i = 0 \) and \(j = 3 \), it is obvious that \(\mathcal{e}^0 \cap \mathcal{e}^3 = \emptyset \) since \(e^0 \cup e^3 \) is a cellular decomposition of \(SU(2) \).
2. For the case where \(i \in \{0,3\} \) and \(j \in \{5,8\} \), we have \(p_2(\mathcal{e}^i) = e_2 \) and \(p_2(\mathcal{e}^j) = S^5 \setminus \{e_2\} \). Then we have \(\mathcal{e}^i \cap \mathcal{e}^j = \emptyset \).
3. For the case where \(i = 5 \) and \(j = 8 \), suppose that \(A \in \mathcal{e}^5 \cap \mathcal{e}^8 \). Since \(\mathcal{e}^8 = \mathcal{e}^5 \mathcal{e}^3 \), we can put \(A = A_1A_2 \) where \(A_1 \in \mathcal{e}^5 \) and \(A_2 \in \mathcal{e}^3 \). We have \(A = A_1 \) since \(p_2(A) = p_2(A_1A_2) = p_2(A_1) \) and \(p_2|_{\mathcal{e}^5} \) is monic. Then we have \(A_2 = 1 \in \mathcal{e}^3 \), which is a contradiction. Thus \(\mathcal{e}^5 \cap \mathcal{e}^8 = \emptyset \).

Next, we will check that the boundaries of the cells are included in the lower dimensional cells. It is obvious that the boundary \(\mathcal{e}^3 \) is included in \(e^0 \). Observe that the boundary \(\mathcal{e}^5 \) is a union of the following two sets:
\[
\{BAB^{-1} \mid A \in A(\mathcal{D}^1), B \in B(D^2)\}, \quad \{BAB^{-1} \mid A \in A(D^3), B \in B(\mathcal{D}^2)\}.
\]
The first set contains only the identity element since \(A \) is the identity element. Lemma 2.1 implies that the second set is contained in \(SU(2) \) since \(B \) is contained in \(H \). Thus we have \(\mathcal{e}^5 \subset \mathcal{e}^3 \). Further we have \(\mathcal{e}^8 = \mathcal{e}^5 \mathcal{e}^3 \mathcal{e}^5 \mathcal{e}^3 \subset \mathcal{e}^2 \mathcal{e}^3 \mathcal{e}^5 \mathcal{e}^0 = e^3 \mathcal{e}^5 \).

Finally, we will show that the inclusion map \(e^0 \cup e^3 \cup e^5 \cup e^8 \to SU(3) \) is epic. Let \(g \in SU(3) \). If \(p_2(g) = e_2 \), then \(g \) is contained in \(SU(2) = e^0 \cup e^3 \). Suppose that \(p_2(g) \neq e_2 \). There is an element \(h \in e^5 \) such that \(p_2(h) = p_2(g) \). Then we have
$h^{-1}g \in SU(2) = e^0 \cup e^3$, since $p_2(h^{-1}g) = e_2$. Therefore we have $g \in h(e^0 \cup e^3) \subset e^0 \cup e^3 \cup e^5 \cup e^8$.

4. A cellular decomposition of G_2

First we need to show

Lemma 4.1. The composite map $p_1\varphi_6 : (V^6, \partial V^6) \to (S^6, \{e_1\})$ is a relative homeomorphism.

Proof. We express the map $(p_1\varphi_6)|_{V^6 \setminus \partial V^6}$ as follows:

\[
\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \\ \end{pmatrix} = p_1\varphi_6(x_1, x_2, x_3, y_1, y_2, z_1) = \begin{pmatrix} 1 - 2X^2Y^2Z^2 \\ 2x_1XYZ \\ 2z_1X^2Y^2Z \\ -2XYZ(x_1y_1 + y_2X) \\ -2XYZ(y_1z_1X - x_1y_2z_1 + x_2Z) \\ -2XYZx_3 \\ -2XYZ(y_1XZ - x_1y_2Z - x_2z_1) \\ \end{pmatrix},
\]

and hence

\[
\begin{pmatrix} 1 - a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \\ \end{pmatrix} = 2XYZ \begin{pmatrix} XYZ \\ x_1Y \\ z_1XY \\ -x_1y_1 - y_2X \\ -y_1z_1X + x_1y_2z_1 - x_2Z \\ -x_3 \\ -y_1XZ + x_1y_2Z + x_2z_1 \\ \end{pmatrix}.
\]

We set for simplicity

\[
\begin{align*}
\alpha_1 &= (1 - a_1)^2 + a_3^2, \\
\alpha_2 &= (1 - a_1)^2 + a_2^2 + a_3^2, \\
\alpha_3 &= (1 - a_1)^2 + a_2^2 + a_3^2 + a_4^2, \\
\beta_1 &= a_3a_5 + (1 - a_1)a_7, \\
\beta_2 &= a_2a_4 + a_3a_5 + (1 - a_1)a_7.
\end{align*}
\]

Since $1 - a_1 > 0$, we have $\alpha_i > 0$ for $i = 1, 2, 3$. By an easy calculation one can obtain the following three equations:

\[
\begin{align*}
Z^2 &= \frac{(1 - a_1)^2}{\alpha_1}, \\
X^2Y^2 &= \frac{1 - a_1}{2Z^2} = \frac{\alpha_1}{2(1 - a_1)}, \\
z_1^2 - 1 &= Z^2 = \frac{a_2^2}{\alpha_1}.
\end{align*}
\]

Since $Z \geq 0$ and $1 - a_1 \geq 0$, (4.1) implies that

\[
Z = \frac{1 - a_1}{\sqrt{\alpha_1}}.
\]

Since the signs of z_1 and a_3 are the same, (4.3) implies that

\[
z_1 = \frac{a_3}{\sqrt{\alpha_1}}.
\]
We easily have
\[(4.6) \quad x_3 = \frac{-a_6}{2YZ} = \frac{-a_6}{\sqrt{2(1 - a_1)}}.\]

Next we determine \(X\) and \(Y\); we have
\[(a_1^2 + (a_5 z_1 + a_7 Z)^2)Y^2 = 4X^4Y^2 Z^2(y_1^2 + y_2^2)(x_1^2 + X^2),\]
\[a_2^2(1 - Y^2) = 4X^2Y^4Z^2(1 - Y^2)x_1^2.\]

It follows from these two equalities that
\[(a_1^2 + (a_5 z_1 + a_7 Z)^2)Y^2 - a_2^2(1 - Y^2) = 4X^4Y^2 Z^2(1 - Y^2).\]

Substituting the equations \((4.2)\), \((4.4)\) and \((4.5)\) in the above equation, we obtain
\[a_4^2Y^2 + \left(\frac{a_3 a_5 + (1 - a_1)a_7}{a_1}\right)^2 Y^2 + a_2^2Y^2 - a_2^2 = \alpha_1(1 - Y^2),\]
whence we have
\[Y^2 = \frac{\alpha_1 \alpha_2}{\alpha_1 \alpha_3 + \beta_1^2}.\]

Since \(Y \geq 0\), we have
\[(4.7) \quad Y = \frac{\sqrt{\alpha_1 \alpha_2}}{\sqrt{\alpha_1 \alpha_3 + \beta_1^2}}.\]

Since \(X \geq 0\), \((4.2)\) and \((4.7)\) imply that
\[(4.8) \quad X = \frac{\sqrt{\alpha_1 \alpha_3 + \beta_1^2}}{\sqrt{2(1 - a_1)\alpha_2}}.\]

We easily have
\[(4.9) \quad x_1 = \frac{a_2}{2XY^2 Z} = \frac{a_2}{\sqrt{2(1 - a_1)\alpha_1 \alpha_2}}.\]

Now we determine \(y_1\) and \(y_2\); we have
\[a_4 x_1 + a_5 z_1 X + a_7 X Z = -2XY Z(x_1^2 + X^2)y_1,\]
into which substituting \((4.3)\), \((4.5)\), \((4.7)\), \((4.8)\) and \((4.9)\) we obtain
\[(4.10) \quad y_1 = \frac{-\beta_2 \sqrt{\alpha_1}}{\sqrt{2(1 - a_1)\alpha_1 \alpha_2}}.\]

Quite similarly the equation
\[a_4 X - a_5 x_1 z_1 - a_7 x_1 Z = -2XY Z(x_1^2 + X^2)y_2\]
gives rise to
\[(4.11) \quad y_2 = \frac{a_2 \beta_1 - a_4 \alpha_1}{\sqrt{2(1 - a_1)\alpha_1 \alpha_2}}.\]

Finally we determine \(x_2\); we have
\[a_5 Z - a_7 z_1 = -2XY Z x_2,\]
which gives

\[x_2 = \frac{a_3a_7 - (1 - a_1)a_5}{\sqrt{2(1 - a_1)a_1}}. \]

Thus we have expressed \(x_1, x_2, x_3, y_1, y_2, z_1 \) in terms of \(a_1, \ldots, a_7 \), that is, the inverse map has been constructed and this completes the proof. \(\square \)

The following is our main result.

Theorem 4.2. The cell complex \(e^0 \cup e^3 \cup e^5 \cup e^6 \cup e^8 \cup e^9 \cup e^{11} \cup e^{14} \) thus constructed gives a cellular decomposition of \(G_2 \).

Proof. First we show that \(\dot{e}^i \cap \dot{e}^j = \emptyset \) if \(i \neq j \). We consider the following three cases:

1. For the case where \(i, j \in \{0, 3, 5, 8\} \), both cells \(\dot{e}^i \) and \(\dot{e}^j \) are in \(SU(3) \) and \(e^0 \cup e^3 \cup e^5 \cup e^8 \) is a cellular decomposition of \(SU(3) \). Then we have \(\dot{e}^i \cap \dot{e}^j = \emptyset \) if \(i \neq j \).
2. For the case where \(i \in \{0, 3, 5, 8\} \) and \(j \in \{6, 9, 11, 14\} \), we have \(p_1(\dot{e}^i) = \{e_1\} \) and \(p_1(\dot{e}^j) = S^0 \setminus \{e_1\} \). Then we have \(\dot{e}^i \cap \dot{e}^j = \emptyset \).
3. For the case where \(i, j \in \{6, 9, 11, 14\} \), suppose that \(A \in \dot{e}^i \cap \dot{e}^j \). Since \(\dot{e}^i = \dot{e}^6 \dot{e}^0 \dot{e}^3 \) and \(\dot{e}^j = \dot{e}^6 \dot{e}^0 \dot{e}^3 \), we can put \(A = A_1A_2 = A'_1A'_2 \) where \(A_1, A'_1 \in \dot{e}^6 \), \(A_2, A'_2 \in \dot{e}^0 \dot{e}^3 \). We have \(A_1 = A'_1 \), since \(p_1(A_1) = p_1(A'_1) = p_1(A'_1A'_2) = p_1(A_1) \) and \(p_1_{|\dot{e}^6} \) is monic. Then we have \(A_2 = A'_2 \) and the first case shows that \(i - 6 = j - 6 \), that is, \(i = j \). Thus \(\dot{e}^i \cap \dot{e}^j = \emptyset \) if \(i \neq j \).

Next, we will check that the boundaries of the cells are included in the lower dimensional cells. In the proof of Proposition 3.2 it is proved that the boundaries \(\dot{e}^3, \dot{e}^5 \) and \(\dot{e}^8 \) are included in the lower dimensional cells. Observe that the boundary \(\dot{e}^6 \) is a union of the following three sets:

\[\{CBAB^{-1}C^{-1} \mid A \in A(D^3), B \in B(D^2), C \in C(D^1)\}, \]
\[\{CBAB^{-1}C^{-1} \mid A \in A(D^3), B \in B(D^2), C \in C(D^1)\}, \]
\[\{CBAB^{-1}C^{-1} \mid A \in A(D^3), B \in B(D^2), C \in C(D^1)\}. \]

The first set contains only the identity element, since \(A \) is the identity element. Lemma 2.1 implies that the second set is contained in \(SU(2) \), since \(B \) and \(C \) are contained in the subgroup \(H \). We consider the third set. If \(C = C(1) = 1 \), it is obvious that \(CBAB^{-1}C^{-1} = BAB^{-1} \in \dot{e}^5 \). Suppose that \(C = C(-1) \). It is easy to check that

\[CB(y_1, y_2)C^{-1} = B(y_1, -y_2), \]
\[CA(x_1, x_2, x_3)C^{-1} = A(-x_1, x_2, -x_3). \]

Thus the third set is contained in \(e^5 \), since we have

\[CB(y_1, y_2)A(x_1, x_2, x_3)B(y_1, y_2)^{-1}C^{-1} \]
\[=(CB(y_1, y_2)C^{-1})(CA(x_1, x_2, x_3)C^{-1})(CB(y_1, y_2)^{-1}C^{-1}) \]
\[=B(y_1, -y_2)A(-x_1, x_2, -x_3)B(y_1, -y_2)^{-1}. \]

We have \(\dot{e}^3 = e^6e^3 \cup e^6e^3 \subset e^6 \cup e^6e^3 = e^6 \cup e^8 \). We also have \(\dot{e}^{11} = e^6e^5 \cup e^6e^5 \subset e^5e^5 \cup e^5e^3 = e^5 \cup e^9 \), and \(\dot{e}^{14} = e^6e^5e^3 \cup e^6e^5e^3 \cup e^6e^5e^3 \subset e^5e^5e^3 \cup e^6e^5e^3 \cup e^6e^5 = e^8 \cup e^9 \cup e^{11} \).
Finally, we will show that the inclusion map $e^0 \cup e^3 \cup e^5 \cup e^8 \cup e^9 \cup e^{11} \cup e^{14} \to G_2$ is epic. Let $g \in G_2$. If $p_1(g) = e_1$, then g is contained in $SU(3) = e^0 \cup e^3 \cup e^5 \cup e^8$. Suppose that $p_1(g) \neq e_1$. There is an element $h \in e^6$ such that $p_1(h) = p_1(g)$. Thus we have $h^{-1} g \in SU(3) = e^0 \cup e^3 \cup e^5 \cup e^8$ since $p_1(h^{-1} g) = e_1$. Therefore we have $g \in h(e^0 \cup e^3 \cup e^5 \cup e^8) \subset e^0 \cup e^3 \cup e^5 \cup e^6 \cup e^8 \cup e^9 \cup e^{11} \cup e^{14}$.

References

