Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Maximum principle on unbounded domains for sub-Laplacians: A potential theory approach


Authors: Andrea Bonfiglioli and Ermanno Lanconelli
Journal: Proc. Amer. Math. Soc. 130 (2002), 2295-2304
MSC (2000): Primary 35B50, 31C05, 35J70
DOI: https://doi.org/10.1090/S0002-9939-02-06569-3
Published electronically: March 8, 2002
MathSciNet review: 1896411
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The maximum principle on a wide class of unbounded domains is proved for solutions to the partial differential inequality $\Delta_{\mathbb{G} }u+c\,u\geq 0$, where $c\leq 0$ and $\Delta_{\mathbb{G} }$ is a real sub-Laplacian. A potential theory approach is followed.


References [Enhancements On Off] (What's this?)

  • [B] H. Bauer, Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Mathematics 22, Springer, Berlin, (1966). MR 35:1801
  • [BCN] H. Berestycki, L. Caffarelli, L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math. 50 (1997), 1089-1111. MR 98k:35064
  • [BL] A. Bonfiglioli, E. Lanconelli, Potential Theory on Carnot-groups, preprint.
  • [BHM] H. Berestycki, F. Hamel, R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J. 103 No.3 (2000), 375-396. MR 2001j:35069
  • [BN] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Braseleira Mat. 22 (1991), 1-37. MR 93a:35048
  • [BP] I. Birindelli, J. Prajapat, One dimensional symmetry in the Heisenberg group, preprint.
  • [CC] C. Constantinescu, A. Cornea, Potential theory on harmonic spaces, Springer-Verlag, Berlin, (1972). MR 54:7817
  • [D] J. Deny, Un théorème sur les ensembles effilés, Annales Univ. Grenoble, Sect. sci. Math. Phys. 23 (1948), 139-142. MR 9:509a
  • [F] G.B. Folland, Subelliptic Estimates and Function Spaces on Nilpotent Groups, Arkiv för Mat. 13 (1975), 161-207. MR 58:13215
  • [FH] S. Friedland, W. K. Hayman, Eigenvalue Inequalities for the Dirichlet Problem on Spheres and the Growth of Subharmonic Functions, Comment. Math. Helvetici 51 (1976), 133-161. MR 54:568
  • [G] L. Gallardo, Capacités, Mouvement Brownien et Problème de l'Épine de Lebesgue sur les Groupes de Lie Nilpotents, Proc. VII Oberwolfach Conference on Probability measures on groups, Lectures Notes in Math., 1981. MR 84a:60089
  • [HK] W. K. Hayman, P. B. Kennedy, Sub-Harmonic Functions, Volume I, Academic Press, London (1976). MR 57:665

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35B50, 31C05, 35J70

Retrieve articles in all journals with MSC (2000): 35B50, 31C05, 35J70


Additional Information

Andrea Bonfiglioli
Affiliation: Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5 - 40126 Bologna, Italia
Email: bonfigli@dm.unibo.it

Ermanno Lanconelli
Affiliation: Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5 - 40126 Bologna, Italia
Email: lanconel@dm.unibo.it

DOI: https://doi.org/10.1090/S0002-9939-02-06569-3
Received by editor(s): January 4, 2001
Published electronically: March 8, 2002
Additional Notes: Investigation supported by University of Bologna, funds for selected research topics.
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society