Equivariant resolution of points of indeterminacy

Authors:
Z. Reichstein and B. Youssin

Journal:
Proc. Amer. Math. Soc. **130** (2002), 2183-2187

MSC (2000):
Primary 14E15, 14L30

Published electronically:
March 8, 2002

MathSciNet review:
1896397

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove an equivariant form of Hironaka's theorem on elimination of points of indeterminacy. Our argument uses canonical resolution of singularities and an extended version of Sumihiro's equivariant Chow lemma.

**[BM]**Edward Bierstone and Pierre D. Milman,*Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant*, Invent. Math.**128**(1997), no. 2, 207–302. MR**1440306**, 10.1007/s002220050141**[Ha]**Robin Hartshorne,*Algebraic geometry*, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR**0463157****[Hi]**Heisuke Hironaka,*Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II*, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2)**79**(1964), 205–326. MR**0199184****[Ka]**T. Kambayashi,*Projective representation of algebraic linear groups of transformations*, Amer. J. Math.**88**(1966), 199–205. MR**0206001****[MFK]**D. Mumford, J. Fogarty, and F. Kirwan,*Geometric invariant theory*, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR**1304906****[PV]**I. R. Shafarevich (ed.),*Algebraic geometry. IV*, Encyclopaedia of Mathematical Sciences, vol. 55, Springer-Verlag, Berlin, 1994. Linear algebraic groups. Invariant theory; A translation of Algebraic geometry. 4 (Russian), Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989 [ MR1100483 (91k:14001)]; Translation edited by A. N. Parshin and I. R. Shafarevich. MR**1309681****[RY1]**Zinovy Reichstein and Boris Youssin,*Essential dimensions of algebraic groups and a resolution theorem for 𝐺-varieties*, Canad. J. Math.**52**(2000), no. 5, 1018–1056. With an appendix by János Kollár and Endre Szabó. MR**1782331**, 10.4153/CJM-2000-043-5**[RY2]**Z. Reichstein, B. Youssin,*A birational invariant for algebraic group actions*, Pacific J. Math., to appear. Available at`http://www.math.ubc.ca/``reichst/pub.html`**[Su]**Hideyasu Sumihiro,*Equivariant completion*, J. Math. Kyoto Univ.**14**(1974), 1–28. MR**0337963****[V]**O. E. Villamayor U.,*Patching local uniformizations*, Ann. Sci. École Norm. Sup. (4)**25**(1992), no. 6, 629–677. MR**1198092**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
14E15,
14L30

Retrieve articles in all journals with MSC (2000): 14E15, 14L30

Additional Information

**Z. Reichstein**

Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2

Email:
reichst@math.ubc.ca

**B. Youssin**

Affiliation:
Department of Mathematics and Computer Science, University of the Negev, Be’er Sheva’, Israel

Address at time of publication:
Hashofar 26/3, Ma’ale Adumim, Israel

Email:
youssin@math.bgu.ac.il

DOI:
http://dx.doi.org/10.1090/S0002-9939-02-06595-4

Keywords:
Group action,
blowing up,
resolution of singularities,
equivariant map

Received by editor(s):
September 29, 2000

Published electronically:
March 8, 2002

Additional Notes:
Z. Reichstein was partially supported by NSF grant DMS-9801675

Communicated by:
Michael Stillman

Article copyright:
© Copyright 2002
American Mathematical Society