Application of the Borel transform to the study of the spectrum of integral equations whose kernels are entire functions of exponential type
Authors:
Murali Rao and LiChien Shen
Journal:
Proc. Amer. Math. Soc. 130 (2002), 22872294
MSC (2000):
Primary 31A10, 34A25
Published electronically:
March 25, 2002
MathSciNet review:
1896410
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Using the Borel transform, we study the spectrum of a class of noncompact integral operators whose kernels are of exponential type and square integrable on the real line. Our method also enables us to obtain an interesting characterization of a wellknown integral equation involving the Bessel function
 1.
H.
Dym and H.
P. McKean, Fourier series and integrals, Academic Press, New
YorkLondon, 1972. Probability and Mathematical Statistics, No. 14. MR 0442564
(56 #945)
 2.
W.
H. J. Fuchs, On the eigenvalues of an integral equation arising in
the theory of bandlimited signals, J. Math. Anal. Appl.
9 (1964), 317–330. MR 0173921
(30 #4128)
 3.
B.
Ja. Levin, Distribution of zeros of entire functions, American
Mathematical Society, Providence, R.I., 1964. MR 0156975
(28 #217)
B.
Ja. Levin, Distribution of zeros of entire functions, Revised
edition, Translations of Mathematical Monographs, vol. 5, American
Mathematical Society, Providence, R.I., 1980. Translated from the Russian
by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields
and H. P. Thielman. MR 589888
(81k:30011)
 4.
H.O. Pollack and D. Slepian, Prolate spheroidal wave functions Fourier analysis and uncertainty (1), Bell System Tech. J. 40(1961), 4364.
 5.
Walter
Rudin, Real and complex analysis, McGrawHill Book Co., New
YorkToronto, Ont.London, 1966. MR 0210528
(35 #1420)
 6.
G.
N. Watson, A Treatise on the Theory of Bessel Functions,
Cambridge University Press, Cambridge, England; The Macmillan Company, New
York, 1944. MR
0010746 (6,64a)
G.
N. Watson, A treatise on the theory of Bessel functions,
Cambridge Mathematical Library, Cambridge University Press, Cambridge,
1995. Reprint of the second (1944) edition. MR 1349110
(96i:33010)
 1.
 H. Dym and H.P. McKean, Fourier Series and Integral, Academic Press, New York, 1972. MR 56:945
 2.
 W.H.J. Fuchs, On the eigenvalues of an integral equation arising in the theory of band limited signals, J. Math. Anal. Appl. 9(1964), 317330. MR 30:4128
 3.
 B. Ja. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, R.I., 1964. MR 28:217; Russian transl. MR 81k:30011
 4.
 H.O. Pollack and D. Slepian, Prolate spheroidal wave functions Fourier analysis and uncertainty (1), Bell System Tech. J. 40(1961), 4364.
 5.
 W. Rudin, Real and Complex Analysis, McGrawHill, New York, 1966. MR 35:1420
 6.
 G.N. Watson, A Treatise on the Theory of Bessel Functions, second edition, Cambridge University Press, London 1962. MR 6:64a; reprint MR 96i:33010
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
31A10,
34A25
Retrieve articles in all journals
with MSC (2000):
31A10,
34A25
Additional Information
Murali Rao
Affiliation:
Department of Mathematics, University of Florida, Gainesville, Florida 32611
Email:
rao@math.ufl.edu
LiChien Shen
Affiliation:
Department of Mathematics, University of Florida, Gainesville, Florida 32611
Email:
shen@math.ufl.edu
DOI:
http://dx.doi.org/10.1090/S0002993902066418
PII:
S 00029939(02)066418
Keywords:
Borel transform,
Bessel functions,
conjugate indicator diagram,
entire functions of exponential type,
integral equation
Received by editor(s):
December 19, 2000
Published electronically:
March 25, 2002
Communicated by:
Juha M. Heinonen
Article copyright:
© Copyright 2002
American Mathematical Society
