Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A proof of Pieri's formula using the generalized Schensted insertion algorithm for rc-graphs


Authors: Mikhail Kogan and Abhinav Kumar
Journal: Proc. Amer. Math. Soc. 130 (2002), 2525-2534
MSC (2000): Primary 14N15
DOI: https://doi.org/10.1090/S0002-9939-02-06366-9
Published electronically: February 4, 2002
MathSciNet review: 1900858
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide a generalization of the Schensted insertion algorithm for rc-graphs of Bergeron and Billey. The new algorithm is used to give a new proof of Pieri's formula.


References [Enhancements On Off] (What's this?)

  • 1. N. Bergeron and S. Billey, RC-graphs and Schubert polynomials, Experimental Math., 2 (1993), 257-269. MR 95g:05107
  • 2. S. Billey, W. Jockusch, R. Stanley. Some combinatorial properties of Schubert polynomials. J. Algebraic Combin. 2 (1993), no. 4, 345-374. MR 94m:05197
  • 3. S. Fomin and A. N. Kirillov, Yang-Baxter equation, symmetric functions, and Schubert polynomials, Discrete Mathematics 153, (1996) 123-143. MR 98b:05101
  • 4. S. Fomin and R. Stanley, Schubert polynomials and the nil-Coxeter algebra. Adv. Math. 103 (1994), no. 2, 196-207. MR 95f:05115
  • 5. M. Kogan RC-graphs and Littlewood-Richardson Rule. Internat. Math. Res. Notices. 2001, no. 15, 765-782.
  • 6. A.Lascoux and M. P. Schutzenberger, Polynomes de Schubert, C.R.Acad. Sci. Paris 294 (1982) 447-450. MR 83e:14039
  • 7. A.Lascoux and M. P. Schutzenberger, Schubert polynomials and the Littlewood-Richardson Rule, Let. Math. Phys. 10 (1985) 111-124. MR 87g:20021
  • 8. I. G. Macdonald, Notes on Schubert Polynomials, Publications du LACIM 6, Université du Québec à Montréal, 1991.
  • 9. L. Manivel. Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence. Cours Spécialisés, No. 3, Société Mathématique de France, Paris, 1998. MR 99k:05159
  • 10. Alexander Postnikov, On a quantum version of Pieri's formula, Advances in Geometry (J.-L. Brylinski et al., eds.), Progr. Math., vol. 172, Birkhäuser, Boston, 1999, pp. 371-383. MR 99m:14096
  • 11. F. Sottile, Pieri's formula for flag manifolds and Schubert polynomials, Annales de l'Institut Fourier 46 (1996), 89-110. MR 97g:14035
  • 12. Fulton, W., Young tableaux : with applications to representation theory and geometry, Cambridge University Press, 1997. MR 99f:05119
  • 13. R. Winkel. A combinatorial bijection between Standard Young Tableaux and reduced words of Grassmannian permutations. Sem. Loth. Comb. 36 (1996), Art. 536h. MR 98a:05157

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14N15

Retrieve articles in all journals with MSC (2000): 14N15


Additional Information

Mikhail Kogan
Affiliation: Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
Email: misha@research.neu.edu

Abhinav Kumar
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: abhinavk@mit.edu

DOI: https://doi.org/10.1090/S0002-9939-02-06366-9
Received by editor(s): November 17, 2000
Received by editor(s) in revised form: April 6, 2001
Published electronically: February 4, 2002
Communicated by: John R. Stembridge
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society